%I #9 Jun 30 2014 12:52:24
%S 1,2,3,4,252,15451,25152,25252,25352,25452,36563,51415,52125,52225,
%T 52325,52425,63536,92529,1455541,1545451,1954591,2255522,2525252,
%U 2853582,2856582,3354533,3534353,4155514,4453544,4456544,4515154,4543454,4546454,5145415,5225225,5334335,5415145
%N Palindromes n with nonzero digits such that n +/- the product of digits of n are both palindromes.
%C These are the palindromes in A244547.
%e 252 has all digits > 0. 252 is a palindrome, 252 - 2*5*2 = 232 is a palindrome, and 252 + 2*5*2 = 272 is a palindrome. Thus 252 is a member of this sequence.
%o (PARI) rev(n)={r="";for(i=1,#digits(n),r=concat(Str(digits(n)[i]),r));return(eval(r))}
%o for(n=1,10^7,if(rev(n)==n,dig=digits(n);p=prod(k=1,#dig,dig[k]);if(p!=0,mi=n-p;ma=n+p;if(rev(mi)==mi&&rev(ma)==ma,print1(n,", ")))))
%Y Cf. A114341, A229761, A007954, A244547.
%K nonn,base
%O 1,2
%A _Derek Orr_, Jun 29 2014