login
A244517
Number of partitions of n where the minimal multiplicity of any part is 4.
2
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 1, 2, 1, 4, 2, 3, 3, 6, 3, 6, 4, 10, 6, 10, 7, 19, 13, 17, 16, 31, 22, 34, 28, 48, 39, 54, 49, 76, 62, 84, 79, 120, 96, 133, 124, 179, 162, 202, 193, 275, 249, 315, 300, 412, 379, 480, 467, 603, 577, 711, 696, 905, 850, 1035, 1038, 1307, 1258, 1509, 1511, 1864, 1834, 2185, 2171, 2673, 2636
OFFSET
1,12
COMMENTS
Column k=4 of A243978.
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 1..1000
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +add(b(n-i*j, i-1, k), j=max(1, k)..n/i)))
end:
a:= n-> b(n$2, 4) -b(n$2, 5):
seq(a(n), n=1..100);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i*j, i - 1, k], {j, Max[1, k], n/i}]]];
a[n_] := b[n, n, 4] - b[n, n, 5];
Array[a, 100] (* Jean-François Alcover, May 01 2018, translated from Maple *)
CROSSREFS
Sequence in context: A353645 A249029 A075997 * A297294 A161309 A161243
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Jun 29 2014
STATUS
approved