This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244515 Number of partitions of n where the minimal multiplicity of any part is 2. 5
 0, 1, 0, 1, 0, 2, 1, 4, 2, 6, 4, 9, 6, 16, 9, 23, 18, 34, 27, 51, 40, 75, 63, 103, 90, 152, 130, 208, 191, 286, 267, 402, 368, 546, 518, 730, 709, 998, 954, 1322, 1305, 1751, 1740, 2330, 2299, 3056, 3074, 3968, 4031, 5202, 5249, 6721, 6877, 8642, 8888, 11147, 11432, 14248, 14747, 18097, 18838, 23093, 23938, 29186, 30489 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 LINKS Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 1..1000 EXAMPLE From Gus Wiseman, Jul 03 2019: (Start) The a(2) = 1 through a(12) = 9 partitions are the following (empty columns not shown). The Heinz numbers of these partitions are given by A325240.   11  22  33    22111  44      33111    55        33311      66           2211         3311    2211111  3322      44111      4422                        22211            4411      3311111    5511                        221111           222211    221111111  33222                                         331111               332211                                         22111111             441111                                                              2222211                                                              33111111                                                              2211111111 (End) MAPLE b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,       b(n, i-1, k) +add(b(n-i*j, i-1, k), j=max(1, k)..n/i)))     end: a:= n-> b(n\$2, 2) -b(n\$2, 3): seq(a(n), n=1..80); MATHEMATICA b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i*j, i - 1, k], {j, Max[1, k], n/i}]]]; a[n_] := b[n, n, 2] - b[n, n, 3]; Array[a, 80] (* Jean-François Alcover, May 01 2018, translated from Maple *) Table[Length[Select[IntegerPartitions[n], Min@@Length/@Split[#]==2&]], {n, 0, 30}] (* Gus Wiseman, Jul 03 2019 *) CROSSREFS Column k = 2 of A243978. Cf. A000041, A007690, A008284, A116608, A325240, A325242. Sequence in context: A065423 A239242 A008733 * A154280 A004795 A161268 Adjacent sequences:  A244512 A244513 A244514 * A244516 A244517 A244518 KEYWORD nonn AUTHOR Joerg Arndt and Alois P. Heinz, Jun 29 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 15 18:22 EDT 2019. Contains 327082 sequences. (Running on oeis4.)