login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244515 Number of partitions of n where the minimal multiplicity of any part is 2. 5
0, 1, 0, 1, 0, 2, 1, 4, 2, 6, 4, 9, 6, 16, 9, 23, 18, 34, 27, 51, 40, 75, 63, 103, 90, 152, 130, 208, 191, 286, 267, 402, 368, 546, 518, 730, 709, 998, 954, 1322, 1305, 1751, 1740, 2330, 2299, 3056, 3074, 3968, 4031, 5202, 5249, 6721, 6877, 8642, 8888, 11147, 11432, 14248, 14747, 18097, 18838, 23093, 23938, 29186, 30489 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

LINKS

Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 1..1000

EXAMPLE

From Gus Wiseman, Jul 03 2019: (Start)

The a(2) = 1 through a(12) = 9 partitions are the following (empty columns not shown). The Heinz numbers of these partitions are given by A325240.

  11  22  33    22111  44      33111    55        33311      66

          2211         3311    2211111  3322      44111      4422

                       22211            4411      3311111    5511

                       221111           222211    221111111  33222

                                        331111               332211

                                        22111111             441111

                                                             2222211

                                                             33111111

                                                             2211111111

(End)

MAPLE

b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,

      b(n, i-1, k) +add(b(n-i*j, i-1, k), j=max(1, k)..n/i)))

    end:

a:= n-> b(n$2, 2) -b(n$2, 3):

seq(a(n), n=1..80);

MATHEMATICA

b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i*j, i - 1, k], {j, Max[1, k], n/i}]]];

a[n_] := b[n, n, 2] - b[n, n, 3];

Array[a, 80] (* Jean-Fran├žois Alcover, May 01 2018, translated from Maple *)

Table[Length[Select[IntegerPartitions[n], Min@@Length/@Split[#]==2&]], {n, 0, 30}] (* Gus Wiseman, Jul 03 2019 *)

CROSSREFS

Column k = 2 of A243978.

Cf. A000041, A007690, A008284, A116608, A325240, A325242.

Sequence in context: A065423 A239242 A008733 * A154280 A004795 A161268

Adjacent sequences:  A244512 A244513 A244514 * A244516 A244517 A244518

KEYWORD

nonn

AUTHOR

Joerg Arndt and Alois P. Heinz, Jun 29 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 15 18:22 EDT 2019. Contains 327082 sequences. (Running on oeis4.)