This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244416 6-adic value of 1/n for n >= 1. 1
 1, 6, 6, 36, 1, 6, 1, 216, 36, 6, 1, 36, 1, 6, 6, 1296, 1, 36, 1, 36, 6, 6, 1, 216, 1, 6, 216, 36, 1, 6, 1, 7776, 6, 6, 1, 36, 1, 6, 6, 216, 1, 6, 1, 36, 36, 6, 1, 1296, 1, 6, 6, 36, 1, 216, 1, 216, 6, 6, 1, 36, 1, 6, 36, 46656, 1, 6, 1, 36, 6, 6, 1, 216, 1, 6, 6, 36, 1, 6, 1, 1296, 1296, 6, 1, 36, 1, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For the definition of 'g-adic value of x', called |x|_g with g an integer >= 2, see the Mahler reference, p. 7. Sometimes also called g-adic absolute value of x. If g is not a prime then this is called a non-archimeden pseudo-valuation. See Mahler, p. 10. REFERENCES K. Mahler, p-adic numbers and their functions, second ed., Cambridge University Press, 1981. LINKS FORMULA a(n) = 1 if n == 1 or 5 (mod 6). a(n) = 6^max(A007814(n), A007949(n)) if n == 0 (mod 6), a(n) = 6^A007814(n) if n == 2 or 4 (mod 6), a(n) = 6^A007949(n) if n == 3 (mod 6). The exponents, called f(1/n) in the Mahler reference, are given in A244417(n). EXAMPLE a(6) = 6^max(1,1) = 6^1 = 6. a(12) = 6^max(2,1) = 6^2 = 36, a(18) = 6^max(1,2) = 36, a(24) = 6^max(3,1) = 6^3 = 216, ... a(2) = 6^1 = 6, a(8) = 6^3 = 216, a(14) = 6^1 = 6, ... a(3) = 6^1 = 6, a(9) = 6^2 = 36, a(15) = 6^1 = 6, ... a(4) = 6^2 = 36, a(10) = 6^1 = 6, a(16) = 6^4 = 1296, ... CROSSREFS Cf. A244417, A006519 (g=2), A038500 (g=3), A240226 (g=4), A060904 (g=5). Sequence in context: A074002 A140959 A015699 * A165827 A256136 A111437 Adjacent sequences:  A244413 A244414 A244415 * A244417 A244418 A244419 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Jun 30 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 03:14 EDT 2019. Contains 323539 sequences. (Running on oeis4.)