

A244413


Exponent of highest power of 8 dividing n.


7



0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,64


COMMENTS

This is the member g = 8 in the gfamily of sequences, g integer >= 2, call it phi(g,n), n >= 1. In the Mahler reference, Lemma 2, pp. 67, this exponent is called f = phi if g divides r = n (s = 1 there), and f = 0 if g does not divide r = n (s = 1 there).


REFERENCES

Kurt Mahler, padic numbers and their functions, 2nd ed., Cambridge University press, 1981


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..65536


FORMULA

n = 8^a(n)*m with a(n) nonnegative integer such that 8 does not divide m, for n >= 1.
O.g.f.: Sum_{k>=1} x^(8^k)/(1x^(8^k)).


MATHEMATICA

Table[IntegerExponent[n, 8], {n, 1, 100}] (* Amiram Eldar, Sep 14 2020 *)


PROG

(PARI) A244413(n) = valuation(n, 8); \\ Antti Karttunen, Oct 07 2017


CROSSREFS

Cf. A007814, A007949, A235127, A112765, A122841, A214411.
Sequence in context: A327170 A024362 A104488 * A318655 A056626 A290081
Adjacent sequences: A244410 A244411 A244412 * A244414 A244415 A244416


KEYWORD

nonn,easy


AUTHOR

Wolfdieter Lang, Jun 27 2014


STATUS

approved



