login
A244411
Nonprimes n such that the product of its divisors is a palindrome.
4
1, 4, 22, 26, 49, 111, 121, 202, 1001, 1111, 2285, 10001, 10201, 11111, 100001, 1000001, 1001001, 1012101, 1100011, 1101011, 1109111, 1111111, 3069307, 10000001, 12028229, 12866669, 100000001, 101000101, 110000011, 110091011, 200010002, 10000000001, 10011111001
OFFSET
1,2
COMMENTS
Primes trivially satisfy this property and are therefore not included in the sequence.
Numbers n such that A136522(A007955(n)) = 1.
A number is in the intersection of A002778 and A001358 iff it is in this sequence.
a(31) > 2*10^8.
a(32) > 4*10^8. - Chai Wah Wu, Aug 25 2015
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..47 (terms < 3.5*10^11)
EXAMPLE
The divisors of 26 are 1,2,13,26. And 1*2*13*26 = 676 is a palindrome. Thus 26 is a member of this sequence.
PROG
(PARI) rev(n)={r=""; for(i=1, #digits(n), r=concat(Str(digits(n)[i]), r)); return(eval(r))}
for(n=1, 2*10^8, if(!isprime(n), d=divisors(n); ss=prod(j=1, #d, d[j]); if(ss==rev(ss), print1(n, ", "))))
(Python)
import sympy
from sympy import isprime
from sympy import divisors
def rev(n):
..r = ""
..for i in str(n):
....r = i + r
..return int(r)
def a():
..for n in range(1, 10**8):
....if not isprime(n):
......p = 1
......for i in divisors(n):
........p*=i
......if rev(p)==p:
........print(n, end=', ')
a()
(Python)
from sympy import divisor_count, sqrt
A244411_list = [1]
for n in range(1, 10**5):
d = divisor_count(n)
if d > 2:
q, r = divmod(d, 2)
s = str(n**q*(sqrt(n) if r else 1))
if s == s[::-1]:
A244411_list.append(n) # Chai Wah Wu, Aug 25 2015
CROSSREFS
KEYWORD
nonn,base,hard
AUTHOR
Derek Orr, Jun 27 2014
EXTENSIONS
a(31) from Chai Wah Wu, Aug 25 2015
a(32)-a(33) from Giovanni Resta, Sep 20 2019
STATUS
approved