The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244350 Decimal expansion of 'lambda', a Sobolev isoperimetric constant related to the "rod inequality", arising from the elasticity study of a rod that is clamped at both ends. 0
 5, 1, 3, 8, 7, 8, 0, 1, 3, 2, 6, 0, 2, 8, 3, 4, 2, 3, 6, 8, 9, 4, 2, 2, 0, 2, 7, 4, 8, 4, 6, 1, 5, 5, 1, 6, 2, 9, 8, 4, 4, 0, 8, 5, 7, 8, 3, 2, 7, 9, 3, 7, 0, 3, 7, 5, 7, 5, 5, 8, 6, 7, 8, 3, 3, 7, 5, 2, 7, 7, 8, 7, 5, 3, 6, 2, 6, 1, 0, 9, 1, 5, 9, 9, 3, 1, 4, 0, 7, 8, 1, 4, 6, 7, 4, 3, 9, 5, 7, 7, 9, 7, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.6 Sobolev Isoperimetric Constants,  p. 221. LINKS FORMULA lambda = theta^4/Pi^4 = 1/(Pi^4*mu), where theta is A076414 and mu is A244347. lambda is also the smallest eigenvalue of the ODE g''''(x)=lambda*g(x), g(0)=g'(0)=g(Pi)=g'(Pi)=0. EXAMPLE 5.13878013260283423689422... MATHEMATICA digits = 103; theta = x /. FindRoot[Cos[x]*Cosh[x] == 1, {x, 5}, WorkingPrecision -> digits+10]; lambda = theta^4/Pi^4; RealDigits[lambda, 10, digits] // First CROSSREFS Cf. A076414 (theta), A244347 (mu). Sequence in context: A214803 A225984 A074048 * A176321 A248130 A134894 Adjacent sequences:  A244347 A244348 A244349 * A244351 A244352 A244353 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Jun 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 06:39 EDT 2020. Contains 334767 sequences. (Running on oeis4.)