login
A244350
Decimal expansion of 'lambda', a Sobolev isoperimetric constant related to the "rod inequality", arising from the elasticity study of a rod that is clamped at both ends.
0
5, 1, 3, 8, 7, 8, 0, 1, 3, 2, 6, 0, 2, 8, 3, 4, 2, 3, 6, 8, 9, 4, 2, 2, 0, 2, 7, 4, 8, 4, 6, 1, 5, 5, 1, 6, 2, 9, 8, 4, 4, 0, 8, 5, 7, 8, 3, 2, 7, 9, 3, 7, 0, 3, 7, 5, 7, 5, 5, 8, 6, 7, 8, 3, 3, 7, 5, 2, 7, 7, 8, 7, 5, 3, 6, 2, 6, 1, 0, 9, 1, 5, 9, 9, 3, 1, 4, 0, 7, 8, 1, 4, 6, 7, 4, 3, 9, 5, 7, 7, 9, 7, 3
OFFSET
1,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.6 Sobolev Isoperimetric Constants, p. 221.
FORMULA
lambda = theta^4/Pi^4 = 1/(Pi^4*mu), where theta is A076414 and mu is A244347.
lambda is also the smallest eigenvalue of the ODE g''''(x)=lambda*g(x), g(0)=g'(0)=g(Pi)=g'(Pi)=0.
EXAMPLE
5.13878013260283423689422...
MATHEMATICA
digits = 103; theta = x /. FindRoot[Cos[x]*Cosh[x] == 1, {x, 5}, WorkingPrecision -> digits+10]; lambda = theta^4/Pi^4; RealDigits[lambda, 10, digits] // First
CROSSREFS
Cf. A076414 (theta), A244347 (mu).
Sequence in context: A214803 A225984 A074048 * A176321 A248130 A365457
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved