The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244313 Consider a number n with m decimal digits, the prefix p of length m-1 and the suffix s of length m-1. The sequence lists the numbers n such that sigma(n) = sigma(p)*sigma(s) where sigma(n) is the sum of the divisors of n. 0
 38, 58, 66, 87, 110, 205, 210, 310, 410, 510, 610, 710, 714, 810, 910, 1010, 2010, 3010, 4010, 5010, 6010, 7010, 8010, 9010, 10010, 20010, 30010, 40010, 50010, 60010, 70010, 80010, 90010, 100010, 200010, 300010, 400010, 500010, 600010, 700010, 800010, 900010 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Property of the sequence : {a(n)} = E1 union E2 where E1 = {38, 58, 66, 87, 205, 714} and E2 = {110, 210, 310, 410, 510, 610, 710, 810, 910, 1010, 2010,...}. E2 = F1 union F2 union... union Fk union... where : F1 = {110, 210,..., 910} with one zero; F2 = {1010, 2010,..., 9010} with two zeros; F3 = {10010, 20010,..., 90010} with three zeros; ...................................................................... Fk = {100…0010, 200…0010,..., 900...0010} with k zeros; ...................................................................... Hence the proposition : If n is of the form n = a0000...010 with k zeros and a =1,2,..., 9 then sigma(n) = sigma(x)*sigma(y) where x = a0000...01 with k-1 zeros and y = 10. LINKS EXAMPLE 3010 is in the sequence because sigma(3010) = 6336; sigma(301) = 352 and sigma(10) = 18 => 6336 = 352*18. MAPLE with(numtheory): for n from 10 to 10000 do:       x:=convert(n, base, 10):n1:=nops(x):       s1:=sum('x[i]*10^(i-1) ', 'i'=1..n1-1):       s2:=(n-irem(n, 10))/10:       x1:=sigma(s1):x2:=sigma(s2):xn:=sigma(n):       if xn = x1*x2         then         printf(`%d, `, n):         else       fi: od: CROSSREFS Cf. A000203. Sequence in context: A078544 A116243 A098126 * A147616 A193568 A039466 Adjacent sequences:  A244310 A244311 A244312 * A244314 A244315 A244316 KEYWORD nonn,base AUTHOR Michel Lagneau, Jun 25 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 17:16 EDT 2020. Contains 337265 sequences. (Running on oeis4.)