login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244276 Expansion of q^(-1/4) * eta(q)^8 * eta(q^4)^2 / eta(q^2)^5 in powers of q. 3
1, -8, 25, -40, 48, -80, 121, -120, 144, -200, 192, -248, 337, -280, 336, -440, 384, -480, 528, -480, 673, -720, 624, -720, 816, -760, 864, -1080, 864, -1000, 1321, -1008, 1200, -1360, 1152, -1440, 1536, -1400, 1488, -1720, 1536, -1760, 2185, -1560, 1872 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Michael Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of phi(-x)^4 * psi(x^2) = phi(-x)^3 * psi(-x)^2 = f(-x)^6 / phi(x) = psi(-x)^8 / psi(x^2)^3 in powers of x where phi(), psi(), f() are Ramanujan theta functions.

Euler transform of period 4 sequence [ -8, -3, -8, -5, ...].

G.f.: Product_{k>0} (1 - x^k)^5 * (1 + x^(2*k))^2 / (1 + x^k)^3.

Convolution inverse of A134415.

EXAMPLE

G.f. = 1 - 8*x + 25*x^2 - 40*x^3 + 48*x^4 - 80*x^5 + 121*x^6 - 120*x^7 + ...

G.f. = q - 8*q^5 + 25*q^9 - 40*q^13 + 48*q^17 - 80*q^21 + 121*q^25 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[QPochhammer[ x]^6/EllipticTheta[ 3, 0, x], {x, 0, n}];

a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x]^4 EllipticTheta[ 2, 0, x]/(2 x^(1/4)), {x, 0, n}];

a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x]^3 EllipticTheta[ 2, Pi/4, x^(1/2)]^2/(2 x^(1/4)), {x, 0, n}];

a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, Pi/4, x^(1/2)]^8 / (2 x^(1/4) EllipticTheta[ 2, 0, x]^3 ), {x, 0, n}];

PROG

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^8 * eta(x^ 4 + A)^2 / eta(x^2 + A)^5, n))};

(Magma) A := Basis( ModularForms( Gamma0(16), 5/2), 180); A[2] - 8*A[6];

CROSSREFS

Cf. A134415.

Sequence in context: A015804 A352978 A302424 * A161448 A031096 A303194

Adjacent sequences: A244273 A244274 A244275 * A244277 A244278 A244279

KEYWORD

sign

AUTHOR

Michael Somos, Sep 01 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 11:21 EST 2022. Contains 358700 sequences. (Running on oeis4.)