login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244276 Expansion of q^(-1/4) * eta(q)^8 * eta(q^4)^2 / eta(q^2)^5 in powers of q. 3
1, -8, 25, -40, 48, -80, 121, -120, 144, -200, 192, -248, 337, -280, 336, -440, 384, -480, 528, -480, 673, -720, 624, -720, 816, -760, 864, -1080, 864, -1000, 1321, -1008, 1200, -1360, 1152, -1440, 1536, -1400, 1488, -1720, 1536, -1760, 2185, -1560, 1872 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of phi(-x)^4 * psi(x^2) = phi(-x)^3 * psi(-x)^2 = f(-x)^6 / phi(x) = psi(-x)^8 / psi(x^2)^3 in powers of x where phi(), psi(), f() are Ramanujan theta functions.

Euler transform of period 4 sequence [ -8, -3, -8, -5, ...].

G.f.: Product_{k>0} (1 - x^k)^5 * (1 + x^(2*k))^2 / (1 + x^k)^3.

Convolution inverse of A134415.

EXAMPLE

G.f. = 1 - 8*x + 25*x^2 - 40*x^3 + 48*x^4 - 80*x^5 + 121*x^6 - 120*x^7 + ...

G.f. = q - 8*q^5 + 25*q^9 - 40*q^13 + 48*q^17 - 80*q^21 + 121*q^25 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[QPochhammer[ x]^6/EllipticTheta[ 3, 0, x], {x, 0, n}];

a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x]^4 EllipticTheta[ 2, 0, x]/(2 x^(1/4)), {x, 0, n}];

a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x]^3 EllipticTheta[ 2, Pi/4, x^(1/2)]^2/(2 x^(1/4)), {x, 0, n}];

a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, Pi/4, x^(1/2)]^8 / (2 x^(1/4) EllipticTheta[ 2, 0, x]^3 ), {x, 0, n}];

PROG

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^8 * eta(x^ 4 + A)^2 / eta(x^2 + A)^5, n))};

(MAGMA) A := Basis( ModularForms( Gamma0(16), 5/2), 180); A[2] - 8*A[6];

CROSSREFS

Cf. A134415.

Sequence in context: A160758 A015804 A302424 * A161448 A031096 A303194

Adjacent sequences:  A244273 A244274 A244275 * A244277 A244278 A244279

KEYWORD

sign

AUTHOR

Michael Somos, Sep 01 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 11:33 EST 2019. Contains 319271 sequences. (Running on oeis4.)