login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244262 Decimal expansion of theta = 2.472548..., an auxiliary constant used to compute the best constant in Friedrichs' inequality in one dimension. 1
2, 4, 7, 2, 5, 4, 8, 0, 7, 5, 2, 4, 0, 1, 2, 2, 7, 0, 1, 4, 3, 7, 6, 3, 5, 5, 0, 9, 3, 5, 8, 2, 0, 2, 8, 3, 7, 7, 4, 3, 6, 0, 5, 5, 5, 5, 8, 8, 4, 1, 1, 5, 1, 6, 0, 8, 0, 7, 2, 2, 1, 4, 8, 1, 1, 7, 2, 1, 8, 1, 9, 1, 2, 6, 2, 7, 5, 4, 3, 2, 0, 9, 7, 7, 0, 4, 6, 8, 7, 4, 0, 8, 7, 5, 8, 8, 4, 2, 4, 8, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.6 Sobolev Isoperimetric Constants, p. 223.

LINKS

Table of n, a(n) for n=1..101.

J. T. Marti, The Least Constant in Friedrichs’ Inequality in One Dimension.

FORMULA

Theta is the unique solution of the equation cos(t) - t/(t^2 + 1)*sin(t) = -1, with 0 < t < Pi.

EXAMPLE

2.4725480752401227014376355093582...

MATHEMATICA

theta = t /. FindRoot[Cos[t] - t/(t^2 + 1)*Sin[t] == -1, {t, 2}, WorkingPrecision -> 101]; RealDigits[theta] // First

CROSSREFS

Cf. A244263.

Sequence in context: A247290 A246183 A134974 * A166531 A133292 A126218

Adjacent sequences:  A244259 A244260 A244261 * A244263 A244264 A244265

KEYWORD

nonn,cons,easy

AUTHOR

Jean-François Alcover, Jun 24 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 14 18:32 EDT 2020. Contains 336483 sequences. (Running on oeis4.)