login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = binomial(2*c-1, c-1) (mod c^3), where c is the n-th composite.
4

%I #40 Jun 27 2023 15:07:54

%S 35,30,291,253,378,782,2404,1260,291,3378,410,7899,3996,6030,126,

%T 10988,11188,5180,19712,8483,5334,34394,1841,21410,20580,39556,38810,

%U 64260,35972,66060,36504,61326,1716,123628,49140,63748,124392,20091,99388,157767,24392

%N a(n) = binomial(2*c-1, c-1) (mod c^3), where c is the n-th composite.

%C A counterexample to the converse of Wolstenholme's theorem (CWT) must have a(n) = 1. No such counterexample is known and if CWT holds, then a(n) > 1 for all n. If the square of a prime p is a counterexample to CWT, that prime satisfies the Wolstenholme congruence modulo p^6 (Cf. McIntosh (1995), p. 387).

%H Felix Fröhlich, <a href="/A244214/b244214.txt">Table of n, a(n) for n = 1..10000</a>

%H C. Helou and G. Terjanian, <a href="https://doi.org/10.1016/j.jnt.2007.06.008">On Wolstenholme's theorem and its converse</a>, Journal of Number Theory, Volume 128, Issue 3 (2008), 475-499.

%H R. J. McIntosh, <a href="https://doi.org/10.4064/aa-71-4-381-389">On the converse of Wolstenholme's Theorem</a>, Acta Arithmetica, 71 (1995), 381-389.

%H V. Trevisan and K. Weber, <a href="http://mc.sbm.org.br/docs/mc/pdf/21/a16.pdf">Testing the converse of Wolstenholme's theorem</a>, Matematica Contemporanea, 21 (2001), 275-286.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Wolstenholme%27s_theorem">Wolstenholme's theorem</a>

%t Mod[Binomial[2#-1,#-1],#^3]&/@Select[Range[100],CompositeQ] (* _Harvey P. Dale_, May 03 2023 *)

%o (PARI) forcomposite(c=1, 100, print1(lift(Mod(binomial(2*c-1, c-1), c^3)), ", "))

%Y Cf. A088164, A228562.

%K nonn

%O 1,1

%A _Felix Fröhlich_, Jun 23 2014

%E Edited by _Felix Fröhlich_, May 27 2021