Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #19 Jan 14 2023 16:52:38
%S -2,3,-1,0,3,-7,14,-25,43,-72,119,-195,318,-517,839,-1360,2203,-3567,
%T 5774,-9345,15123,-24472,39599,-64075,103678,-167757,271439,-439200,
%U 710643,-1149847,1860494,-3010345,4870843,-7881192
%N Inverse binomial transform of -2 followed by A000032(n+1).
%C A simple transform of a(n) is a(n) with -a(0) instead of nonzero a(0) (or -a(0) followed by a(n+1)). Example: -1 followed by A198631(n+1)/A006519(n+2). Its inverse binomial transform is -1, 3/2, -2, 9/4, -2, 3/2, -2,... = -(-1)^n*A143074(n).
%C Difference table of -2 followed by A000032(n+1):
%C -2, 1, 3, 4, 7, 11, 18,...
%C 3, 2, 1, 3, 4, 7, 11,...
%C -1, -1, 2, 1, 3, 4, 7,...
%C 0, 3, -1, 2, 1, 3, 4,...
%C 3, -4, 3, -1, 2, 1, 3,...
%C -7, 7, -4, 3, -1, 2, 1,...
%C 14, -11, 7, -4, 3, -1, 2,...
%C etc.
%C a(n) is the first column.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-2,0,1).
%F a(n) = -2, 3, -1, followed by -(-1)^n*A206417(n).
%F a(n) = (-1)^n* (A000032(n) - 4).
%F a(n+3) = -a(n) -(-1)^n*A022112(n).
%F a(n) = -2*a(n-1) + a(n-3). - _Colin Barker_, Jun 23 2014
%F G.f.: -(5*x^2-x-2) / ((x+1)*(x^2-x-1)). - _Colin Barker_, Jun 23 2014
%o (PARI) Vec(-(5*x^2-x-2)/((x+1)*(x^2-x-1)) + O(x^100)) \\ _Colin Barker_, Jun 23 2014
%Y Cf. A000045, A000032, A000204.
%K sign,easy
%O 0,1
%A _Paul Curtz_, Jun 23 2014