login
A244156
Numbers n such that when the n-th Catalan restricted growth string [b_k, b_{k-1}, ..., b_2, b_1] (see A239903) is viewed as a simple numeral in Catalan Base: b_k*C(k) + b_{k-1}*C(k-1) + ... + b_2*C(2) +b_1*C(1) it differs from n. Here C(m) = A000108(m).
5
10, 11, 12, 13, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 52, 53, 54, 55, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105
OFFSET
1,1
LINKS
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
(define A244156 (MATCHING-POS 1 1 (lambda (k) (not (= k (CatBaseSum (A239903raw k))))))) ;; A239903raw given in A239903.
(define (CatBaseSum lista) (let loop ((digits (reverse lista)) (i 1) (s 0)) (if (null? digits) s (loop (cdr digits) (+ i 1) (+ s (* (car digits) (A000108 i)))))))
CROSSREFS
Complement of A244155. Positions of nonzeros in A244157.
Sequence in context: A066309 A244510 A107860 * A058948 A108584 A098605
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 22 2014
STATUS
approved