The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244155 Numbers n such that when the n-th Catalan restricted growth string [b_k, b_{k-1}, ..., b_2, b_1] (see A239903) is viewed as a simple numeral in Catalan Base: b_k*C(k) + b_{k-1}*C(k-1) + ... + b_2*C(2) + b_1*C(1) it is equal to n. Here C(m) = A000108(m). 7

%I

%S 0,1,2,3,4,5,6,7,8,9,14,15,16,17,18,19,20,21,22,23,42,43,44,45,46,47,

%T 48,49,50,51,56,57,58,59,60,61,62,63,64,65,132,133,134,135,136,137,

%U 138,139,140,141,146,147,148,149,150,151,152,153,154,155,174,175

%N Numbers n such that when the n-th Catalan restricted growth string [b_k, b_{k-1}, ..., b_2, b_1] (see A239903) is viewed as a simple numeral in Catalan Base: b_k*C(k) + b_{k-1}*C(k-1) + ... + b_2*C(2) + b_1*C(1) it is equal to n. Here C(m) = A000108(m).

%C In range 0 .. 58784, these are numbers k such that A244158(A239903(n)) = k. (see comments at A244157).

%H Antti Karttunen, <a href="/A244155/b244155.txt">Table of n, a(n) for n = 0..1279</a>

%o (Scheme, with _Antti Karttunen_'s IntSeq-library)

%o (define A244155 (FIXED-POINTS 0 0 (COMPOSE CatBaseSum A239903raw))) ;; A239903raw given in A239903.

%o (define (CatBaseSum lista) (let loop ((digits (reverse lista)) (i 1) (s 0)) (if (null? digits) s (loop (cdr digits) (+ i 1) (+ s (* (car digits) (A000108 i)))))))

%Y Complement of A244156. Positions of zeros in A244157.

%Y A197433 is a subsequence.

%Y Cf. A000108, A239903, A014418, A244158.

%K nonn

%O 0,3

%A _Antti Karttunen_, Jun 22 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 18 04:48 EST 2020. Contains 332011 sequences. (Running on oeis4.)