%I
%S 0,1,2,3,4,5,6,7,8,9,14,15,16,17,18,19,20,21,22,23,42,43,44,45,46,47,
%T 48,49,50,51,56,57,58,59,60,61,62,63,64,65,132,133,134,135,136,137,
%U 138,139,140,141,146,147,148,149,150,151,152,153,154,155,174,175
%N Numbers n such that when the nth Catalan restricted growth string [b_k, b_{k1}, ..., b_2, b_1] (see A239903) is viewed as a simple numeral in Catalan Base: b_k*C(k) + b_{k1}*C(k1) + ... + b_2*C(2) + b_1*C(1) it is equal to n. Here C(m) = A000108(m).
%C In range 0 .. 58784, these are numbers k such that A244158(A239903(n)) = k. (see comments at A244157).
%H Antti Karttunen, <a href="/A244155/b244155.txt">Table of n, a(n) for n = 0..1279</a>
%o (Scheme, with _Antti Karttunen_'s IntSeqlibrary)
%o (define A244155 (FIXEDPOINTS 0 0 (COMPOSE CatBaseSum A239903raw))) ;; A239903raw given in A239903.
%o (define (CatBaseSum lista) (let loop ((digits (reverse lista)) (i 1) (s 0)) (if (null? digits) s (loop (cdr digits) (+ i 1) (+ s (* (car digits) (A000108 i)))))))
%Y Complement of A244156. Positions of zeros in A244157.
%Y A197433 is a subsequence.
%Y Cf. A000108, A239903, A014418, A244158.
%K nonn
%O 0,3
%A _Antti Karttunen_, Jun 22 2014
