login
A244155
Numbers n such that when the n-th Catalan restricted growth string [b_k, b_{k-1}, ..., b_2, b_1] (see A239903) is viewed as a simple numeral in Catalan Base: b_k*C(k) + b_{k-1}*C(k-1) + ... + b_2*C(2) + b_1*C(1) it is equal to n. Here C(m) = A000108(m).
7
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 174, 175
OFFSET
0,3
COMMENTS
In range 0 .. 58784, these are numbers k such that A244158(A239903(n)) = k. (see comments at A244157).
LINKS
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
(define A244155 (FIXED-POINTS 0 0 (COMPOSE CatBaseSum A239903raw))) ;; A239903raw given in A239903.
(define (CatBaseSum lista) (let loop ((digits (reverse lista)) (i 1) (s 0)) (if (null? digits) s (loop (cdr digits) (+ i 1) (+ s (* (car digits) (A000108 i)))))))
CROSSREFS
Complement of A244156. Positions of zeros in A244157.
A197433 is a subsequence.
Sequence in context: A271837 A290950 A032577 * A066310 A342226 A032987
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 22 2014
STATUS
approved