login
Decimal expansion of -zeta'(3) (the first derivative of the zeta function at 3).
15

%I #14 Sep 13 2018 13:28:26

%S 1,9,8,1,2,6,2,4,2,8,8,5,6,3,6,8,5,3,3,3,0,6,8,1,8,2,1,5,0,3,2,8,5,7,

%T 9,6,8,7,5,5,4,2,7,9,3,4,6,3,8,3,5,0,0,3,3,4,6,8,8,9,9,6,3,1,9,2,7,2,

%U 5,6,6,9,4,2,2,6,5,1,1,0,4,1,5,1,5,7,0,8,4,2,1,7,7,5,9,5,7,4,2,1,4,9,9,1,1

%N Decimal expansion of -zeta'(3) (the first derivative of the zeta function at 3).

%H J. B. Rosser, L. Schoenfeld, <a href="https://projecteuclid.org/euclid.ijm/1255631807">Approximate formulas for some functions of prime numbers</a>, Ill. J. Math. 6 (1) (1962) 64-94, Table IV

%F Sum_{n>=1} log(n) / n^3. - _Vaclav Kotesovec_, Aug 22 2015

%e 0.19812624288563685333068182150328579687554279346383500334688996319272566942265...

%t RealDigits[-Zeta'[3], 10, 105][[1]]

%Y Cf. A073002, A261506, A288391.

%K nonn,cons

%O 0,2

%A _Robert G. Wilson v_, Jun 20 2014