login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244044 Number of length n words on alphabet {0,1,2,3} which contain all 16 of the 2-letter strings of the alphabet. 1
331776, 5806080, 69672960, 675578880, 5675235840, 42832800000, 297267224832, 1927826369280, 11821052680704, 69152452363584, 388663047288576, 2110540207741632, 11123834480487936, 57120835559901696, 286669843226634240, 1409843999618778240, 6809949521252980992 (list; graph; refs; listen; history; text; internal format)
OFFSET

17,1

COMMENTS

The expected wait time to see all 16 2-letter subwords is: 3401981586663184695807274256173879732908913569174615510479814304735002007 *1982900192550576041 / (2^3 *3^3 *5^3 *11^2 *13^2 *17 *19 *23 *29 *31 *37 *41 *43 *47 *53 *59 *61 *67 *71 *73 *79 *83 *89 *97 *101 *103 *107 *113 *127 *131 *137 *139 *149 *151 *157 *163 *167 *173 *179 *191 *199 *211 *223 *227 *239 *251) (approximately 55.0688).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 17..150

MAPLE

b:= proc(n, t, s) option remember; `if`(s={}, 4^n, `if`(nops(s)>n,

       0, add(b(n-1, j, s minus {4*t+j}), j=0..3)))

    end:

a:= n-> 4*b(n-1, 0, {$0..15}):

seq(a(n), n=17..25);  # Alois P. Heinz, Jun 18 2014

MATHEMATICA

abcd=Solve[{aa==uaa(z^2+z(aa+ab+ac+ad)), ab==uab(z^2+z(ba+bb+bc+bd)), ac==uac(z^2+z(ca+cb+cc+cd)), ad==uad(z^2+z(da+db+dc+dd)), ba==uba(z^2+z(aa+ab+ac+ad)), bb==ubb(z^2+z(ba+bb+bc+bd)), bc==ubc(z^2+z(ca+cb+cc+cd)), bd==ubd(z^2+z(da+db+dc+dd)), ca==uca(z^2+z(aa+ab+ac+ad)), cb==ucb(z^2+z(ba+bb+bc+bd)), cc==ucc(z^2+z(ca+cb+cc+cd)), cd==ucd(z^2+z(da+db+dc+dd)), da==uda(z^2+z(aa+ab+ac+ad)), db==udb(z^2+z(ba+bb+bc+bd)), dc==udc(z^2+z(ca+cb+cc+cd)), dd==udd(z^2+z(da+db+dc+dd))}, {aa, ab, ac, ad, ba, bb, bc, bd, ca, cb, cc, cd, da, db, dc, dd}];

fz[uaa_, uab_, uac_, uad_, uba_, ubb_, ubc_, ubd_, uca_, ucb_, ucc_, ucd_, uda_, udb_, udc_, udd_] =aa+ab+ac+ad+ba+bb+bc+bd+ca+cb+cc+cd+da+db+dc+dd/.abcd//Simplify;

t=Map[Total[Map[Apply[fz, #]&, #]]&, Table[Select[Tuples[{0, 1}, 16], Count[#, 0]==n&], {n, 0, 16}]];

nn=35; Drop[Flatten[CoefficientList[Series[Sum[(-1)^(i+1)t[[i]], {i, 1, 16}], {z, 0, nn}], z]], 17]

CROSSREFS

Cf. A243862.

Sequence in context: A259011 A259004 A256902 * A134359 A013913 A258897

Adjacent sequences:  A244041 A244042 A244043 * A244045 A244046 A244047

KEYWORD

nonn

AUTHOR

Edward Williams and Geoffrey Critzer, Jun 17 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 13:35 EST 2018. Contains 318149 sequences. (Running on oeis4.)