Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #11 Mar 04 2019 23:12:07
%S 1,4,88,41008,8898489952,418997705236253480128,
%T 928971316248341903257187589777603944778112,
%U 4566501711345281867283814391125123371716411674583075407993026856131137508750543524608
%N Denominators of rational approximations to sqrt(7) obtained from Newton's method.
%H R. Parimala, <a href="https://doi.org/10.1090/S0273-0979-2014-01443-0">A Hasse principle for quadratic forms over function fields</a>, Bull. Amer. Math. Soc. (N.S.) 51 (2014), no. 3, 447--461. MR3196794.
%e 2, 11/4, 233/88, 108497/41008, 23543191457/8898489952, ...
%p N:=7;
%p s:=[floor(sqrt(N))];
%p M:=8;
%p for n from 1 to M do
%p x:=s[n];
%p h:=(N-x^2)/(2*x);
%p s:=[op(s),x+h]; od:
%p lprint(s);
%p s1:=map(numer,s);
%p s2:=map(denom,s);
%Y Cf. A244012 (numerators).
%Y The analogs for sqrt(k), k=2,3,5,6,7 are: A001601/A051009, A002812/A071579, A081459/A081460, A244014/A244015, A244012/A244013.
%K nonn,frac
%O 0,2
%A _N. J. A. Sloane_, Jun 18 2014