login
A243996
Numbers n such that phi(sigma*(n)) = sigma*(phi(n)), where sigma*(n) is the sum of anti-divisors of n and phi(n) is the Euler totient function.
1
7, 9, 20, 25, 80, 143, 825, 3117, 3216, 22774, 52026, 55804, 138276, 187733, 228384, 265545, 320766, 549540, 830814, 839784, 901376, 1293552, 1315776, 2635866, 6771114, 11126800, 12087848, 24351460, 49382242, 52344292, 60063744, 65980038, 78279016, 97638080
OFFSET
1,1
COMMENTS
a(70) > 10^10. - Hiroaki Yamanouchi, Sep 28 2015
LINKS
Hiroaki Yamanouchi, Table of n, a(n) for n = 1..69
EXAMPLE
sigma*(phi(25)) = sigma*(20) = 24, phi(sigma*(25)) = phi(39) = 24.
MAPLE
with(numtheory): P:=proc(q) local a, b, c, d, j, k, n;
for n from 1 to q do
k:=0; j:=n; while j mod 2<>1 do k:=k+1; j:=j/2; od;
a:=sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2;
k:=0; c:=phi(n); j:=phi(n); while j mod 2<>1 do k:=k+1; j:=j/2; od;
b:=sigma(2*c+1)+sigma(2*c-1)+sigma(c/2^k)*2^(k+1)-6*c-2;
if b=phi(a) then print(n); fi; od; end: P(10^10);
MATHEMATICA
antiDivisors[n_] := Select[ Union[ Join[ Select[ Divisors[2 n - 1], OddQ[#] && # != 1 &], Select[ Divisors[ 2n + 1], OddQ[#] && # != 1 &], 2n/Select[ Divisors[ 2n], OddQ[#] && # != 1 &]]], # < n &]; fQ[n_] := EulerPhi@ Total@ antiDivisors@ n == Total@ antiDivisors@ EulerPhi@ n; k = 3; lst = {}; While[k < 10000001, If[ fQ@ k, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Jun 21 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Jun 18 2014
EXTENSIONS
a(22)-a(25) from Robert G. Wilson v, Jun 21 2014
a(26)-a(34) from Hiroaki Yamanouchi, Sep 28 2015
STATUS
approved