login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243945 a(n) = Sum_{k=0..n} C(2*k, k)^2 * C(n+k, n-k). 5
1, 5, 49, 605, 8281, 120125, 1809025, 27966125, 440790025, 7051890125, 114160867129, 1865975723045, 30743797894681, 509948702030045, 8507207970913729, 142626515754330125, 2401552098016698025, 40591712338241826125, 688413807606268692025, 11710401759994742685125 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The g.f.s formed from a(2*n)^(1/2) and (a(2*n+1)/5)^(1/2) are:

A243946: sqrt( (1+x + sqrt(1-18*x+x^2)) / (2*(1-18*x+x^2)) );

A243947: sqrt( (1+x - sqrt(1-18*x+x^2)) / (10*x*(1-18*x+x^2)) ).

Lim_{n->infinity} a(n+1)/a(n) = 9 + 4*sqrt(5).

Diagonal of rational function 1/(1 - (x + y + x*z + y*z + x*y*z)). - Gheorghe Coserea, Aug 24 2018

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..800

A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.

FORMULA

G.f.: Sum_{n>=0} binomial(2*n, n)^2 * x^n / (1-x)^(2*n+1).

G.f.: 1 / AGM(1-x, sqrt(1-18*x+x^2)), where AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.

a(2*n) = A243946(n)^2.

a(2*n+1) = 5 * A243947(n)^2.

Recurrence: n^2*(2*n-3)*a(n) = (2*n-1)*(19*n^2 - 38*n + 14)*a(n-1) - (2*n-3)*(19*n^2 - 38*n + 14)*a(n-2) + (n-2)^2*(2*n-1)*a(n-3). - Vaclav Kotesovec, Aug 18 2014

a(n) ~ (2+sqrt(5)) * (9+4*sqrt(5))^n / (4*Pi*n). - Vaclav Kotesovec, Aug 18 2014

a(n) = hypergeom([1/2, -n, n + 1], [1, 1], -4). - Peter Luschny, Mar 14 2018

G.f. y=A(x) satisfies: 0 = x*(x^2 - 1)*(x^2 - 18*x + 1)*y'' + (3*x^4 - 34*x^3 - 38*x^2 + 38*x - 1)*y' + (x^3 - 3*x^2 - 19*x + 5)*y. - Gheorghe Coserea, Aug 29 2018

EXAMPLE

G.f.: A(x) = 1 + 5*x + 49*x^2 + 605*x^3 + 8281*x^4 + 120125*x^5 + ... where

A(x) = 1/(1-x) + 2^2*x/(1-x)^3 + 6^2*x^2/(1-x)^5 + 20^2*x^3/(1-x)^7 + 70^2*x^4/(1-x)^9 + 252^2*x^5/(1-x)^11 + 924^2*x^6/(1-x)^13 + ... + A000984(n)^2*x^n/(1-x)^(2*n+1) + ...

MATHEMATICA

Table[Sum[Binomial[2*k, k]^2 * Binomial[n + k, n - k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 18 2014 *)

a[n_] := HypergeometricPFQ[{1/2, -n, n + 1}, {1, 1}, -4];

Table[a[n], {n, 0, 19}] (* Peter Luschny, Mar 14 2018 *)

PROG

(PARI) {a(n)=sum(k=0, n, binomial(2*k, k)^2*binomial(n+k, n-k))}

for(n=0, 20, print1(a(n), ", "))

(PARI) {a(n)=local(A=1); A=sum(m=0, n, binomial(2*m, m)^2 * x^m/(1-x +x*O(x^n))^(2*m+1)); polcoeff(A, n)}

for(n=0, 20, print1(a(n), ", "))

(PARI) {a(n)=polcoeff( 1 / agm(1-x, sqrt((1-x)^2 - 16*x +x*O(x^n))), n)}

for(n=0, 20, print1(a(n), ", "))

(MAGMA) &cat[ [&+[ Binomial(2*k, k)^2 * Binomial(n+k, n-k): k in [0..n]]]: n in [0..30]]; // Vincenzo Librandi, Aug 25 2018

CROSSREFS

Cf. A243946, A243947, A245925.

Sequence in context: A274671 A112241 A216483 * A297513 A228511 A116873

Adjacent sequences:  A243942 A243943 A243944 * A243946 A243947 A243948

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Aug 17 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 25 11:32 EST 2020. Contains 338623 sequences. (Running on oeis4.)