OFFSET
0,3
COMMENTS
Triangle T = A243920 is generated by sums of matrix powers of itself such that:
T(n,k) = Sum_{j=1..n-k-1} [T^j](n-1,k) with T(n+1,n) = 2*n+1 and T(n,n)=0 for n>=0.
FORMULA
a(n) = A243920(n+1,1) / 3.
EXAMPLE
G.f.: 1 = 1*(1-x) + 1*x*(1-x)^2/(1+2*2*x) + 6*x^2*(1-x)^3/((1+2*2*x)*(1+2*3*x)) + 53*x^3*(1-x)^4/((1+2*2*x)*(1+2*3*x)*(1+2*4*x)) + 612*x^4*(1-x)^5/((1+2*2*x)*(1+2*3*x)*(1+2*4*x)*(1+2*5*x)) +...
PROG
(PARI) {a(n)=if(n<0, 0, polcoeff(1-sum(k=0, n-1, a(k)*x^k*(1-x)^(k+1)/prod(j=1, k, 1+2*(j+1)*x+x*O(x^n))), n))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 15 2014
STATUS
approved