login
A243900
Prime p such that p^5 + p^3 + p - 4 and p^5 + p^3 + p + 4 are primes.
1
3, 5, 19, 23, 277, 751, 1549, 2851, 2963, 3089, 3463, 3511, 4057, 6067, 6619, 7873, 9257, 10937, 11161, 11321, 11483, 12589, 13997, 15139, 25121, 25939, 26113, 26861, 30971, 33889, 37139, 38119, 39251, 39979, 40763, 41851, 42359, 44293, 50753, 50867, 51907, 54331, 54401, 55871, 56921, 58321, 60611, 62459
OFFSET
1,1
COMMENTS
Intersection of A243898 (Prime p such that p^5 + p^3 + p + 4 is prime) and A243899 (Prime p such that p^5 + p^3 + p - 4 is prime).
LINKS
EXAMPLE
Prime p = 3 is in this sequence as p^5 + p^3 + p + 4 = 277 (prime) and p^5 + p^3 + p - 4 = 269 (prime).
Prime p = 5 is in this sequence as p^5 + p^3 + p + 4 = 3259 (prime) and p^5 + p^3 + p - 4 = 3251 (prime).
MATHEMATICA
Select[Prime@ Range[10^4], AllTrue[#^5 + #^3 + # + {-4, 4}, PrimeQ] &] (* Michael De Vlieger, Jan 15 2018 *)
PROG
(Python)
import sympy.ntheory as snt
p=1
while p>0:
....p=snt.nextprime(p)
....pp=p+(p**3)+(p**5)-4
....qq=p+(p**3)+(p**5)+4
....if snt.isprime(pp) == True and snt.isprime(qq) == True:
........print(p)
CROSSREFS
Sequence in context: A180931 A118484 A243898 * A095826 A058778 A211439
KEYWORD
nonn
AUTHOR
Abhiram R Devesh, Jun 14 2014
STATUS
approved