%I #9 Jul 03 2016 00:14:42
%S 3,5,11,19,23,37,43,103,127,193,199,239,269,277,283,373,397,457,467,
%T 509,751,761,887,919,947,977,1019,1039,1051,1069,1087,1277,1307,1481,
%U 1531,1549,1559,1613,1759,2003,2017,2243,2311,2357,2417,2447,2467,2473,2671,2851,2963,3089,3253,3257,3323,3433,3463,3511,3539
%N Prime p such that p^5 + p^3 + p - 4 is prime.
%H Abhiram R Devesh, <a href="/A243899/b243899.txt">Table of n, a(n) for n = 1..10000</a>
%e Prime p = 3 is in this sequence as p^5 + p^3 + p - 4 = 269 (prime).
%e Prime p = 5 is in this sequence as p^5 + p^3 + p - 4 = 3251 (prime).
%t Select[Prime[Range[500]], PrimeQ[#^5+#^3+#-4]&] (* _Harvey P. Dale_, Jul 03 2015 *)
%o (Python)
%o import sympy.ntheory as snt
%o p=1
%o while p>0:
%o ....p=snt.nextprime(p)
%o ....pp=p+(p**3)+(p**5)-4
%o ....if snt.isprime(pp) == True:
%o ........print(p, pp)
%K nonn,easy
%O 1,1
%A _Abhiram R Devesh_, Jun 14 2014