login
A243899
Prime p such that p^5 + p^3 + p - 4 is prime.
2
3, 5, 11, 19, 23, 37, 43, 103, 127, 193, 199, 239, 269, 277, 283, 373, 397, 457, 467, 509, 751, 761, 887, 919, 947, 977, 1019, 1039, 1051, 1069, 1087, 1277, 1307, 1481, 1531, 1549, 1559, 1613, 1759, 2003, 2017, 2243, 2311, 2357, 2417, 2447, 2467, 2473, 2671, 2851, 2963, 3089, 3253, 3257, 3323, 3433, 3463, 3511, 3539
OFFSET
1,1
LINKS
EXAMPLE
Prime p = 3 is in this sequence as p^5 + p^3 + p - 4 = 269 (prime).
Prime p = 5 is in this sequence as p^5 + p^3 + p - 4 = 3251 (prime).
MATHEMATICA
Select[Prime[Range[500]], PrimeQ[#^5+#^3+#-4]&] (* Harvey P. Dale, Jul 03 2015 *)
PROG
(Python)
import sympy.ntheory as snt
p=1
while p>0:
....p=snt.nextprime(p)
....pp=p+(p**3)+(p**5)-4
....if snt.isprime(pp) == True:
........print(p, pp)
CROSSREFS
Sequence in context: A153065 A089439 A122516 * A168161 A217792 A284036
KEYWORD
nonn,easy
AUTHOR
Abhiram R Devesh, Jun 14 2014
STATUS
approved