login
A243898
Prime p such that p^5 + p^3 + p + 4 is prime.
2
3, 5, 19, 23, 41, 59, 101, 109, 137, 139, 191, 223, 229, 233, 277, 293, 307, 311, 331, 349, 419, 499, 563, 599, 641, 647, 751, 797, 811, 839, 859, 881, 1021, 1117, 1181, 1193, 1259, 1301, 1427, 1453, 1549, 1571, 1609, 1619, 1621, 1637, 1697, 1721, 1811, 1871, 1889, 1907, 1949, 1973, 2039, 2153, 2309, 2579, 2609, 2663
OFFSET
1,1
LINKS
EXAMPLE
Prime p = 3 is in this sequence as p^5 + p^3 + p +4 = 277 (prime).
Prime p = 5 is in this sequence as p^5 + p^3 + p +4 = 3259 (prime).
PROG
(Python)
import sympy.ntheory as snt
p=1
while p>0:
....p=snt.nextprime(p)
....pp=p+(p**3)+(p**5)+4
....if snt.isprime(pp) == True:
........print(p, pp)
CROSSREFS
Sequence in context: A329797 A180931 A118484 * A243900 A095826 A058778
KEYWORD
nonn,easy
AUTHOR
Abhiram R Devesh, Jun 14 2014
STATUS
approved