OFFSET
1,1
COMMENTS
The first 4 entries of this sequence are the first entry of the following sequences:
A046132 : Larger member p+4 of cousin primes (p, p+4).
A243817 : Primes p for which p - 4 and p^3 - 4 are primes.
A243818 : Primes p for which p^i - 4 is prime for i = 1, 3 and 5.
A243861 : Primes p for which p^i - 4 is prime for i = 1, 3, 5 and 7.
EXAMPLE
a(1) = 7 because 7-4 = 3 (prime),
a(2) = 11 because 11-4 = 7 (prime) and 11^3 - 4 = 1327 (prime).
PROG
(Python)
import sympy
## isp_list returns an array of true/false for prime number test for a
## list of numbers
def isp_list(ls):
....pt=[]
....for a in ls:
........if sympy.ntheory.isprime(a)==True:
............pt.append(True)
....return(pt)
co=1
while co > 0:
....al=0
....n=2
....while al!=co:
........d=[]
........for i in range(0, co):
............d.append(int(n**((2*i)+1))-4)
........al=isp_list(d).count(True)
........if al==co:
............## Prints prime number and its corresponding sequence d
............print(n, d)
........n=sympy.ntheory.nextprime(n)
....co=co+1
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Abhiram R Devesh, Jun 13 2014
EXTENSIONS
a(6) from Bert Dobbelaere, Jul 16 2019
a(7) from Giovanni Resta, Jul 18 2019
STATUS
approved