login
Positive integers that do not appear in A243700.
5

%I #29 Mar 14 2024 23:27:12

%S 4,6,10,12,17,19,21,23,27,34,36,39,42,46,48,51,57,61,64,66,69,73,75,

%T 78,81,83,85,90,92,95,99,104,108,111,114,116,119,124,126,133,135,137,

%U 140,145,148,150,152,157,160,163,165,168,170,173,176,178,186,191,195,198,200,204,206,209,212,216,221,223,225,230,237,239

%N Positive integers that do not appear in A243700.

%C A positive integer m belongs to this sequence iff A243700(1) + A243700(2) + ... + A243700(m) is not 0 modulo m.

%C Based on an analysis by John Pezzullo of the b-file of 30542 terms it appears that a(n) is growing like c*n, where c is approximately 3; see the link. - _Alexander R. Povolotsky_, Jun 19 2014

%H Max Alekseyev, <a href="/A243864/b243864.txt">Table of n, a(n) for n = 1..30542</a> (contains all terms below 10^5)

%H John Pezzullo, <a href="https://oeis.org/wiki/File:A243864.pdf">Data points approximation analysis</a>.

%H Hugo Pfoertner, <a href="/A243864/a243864.txt">Table of n, a(n) for n = 1..100000</a>

%H Hugo Pfoertner, <a href="/A243864/a243864.png">Plot of a(n) - (3.33879*n^0.998152 + 3.36)</a>, fit of 100000 terms.

%H Hugo Pfoertner, <a href="/A243864/a243864_1.png">Plot of a(n) - (3.2418*n^1.00065 + 307.6)</a>, fit of 530000 terms.

%Y Cf. A243700.

%K nonn

%O 1,1

%A _Max Alekseyev_, Jun 13 2014