This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A243852 Irregular triangular array of numerators of the positive rational numbers ordered as in Comments. 4

%I

%S 1,3,2,4,3,5,5,3,6,7,7,6,3,7,9,11,11,12,8,6,1,8,11,15,16,19,13,15,13,

%T 15,12,2,3,9,13,19,21,26,18,23,20,26,23,5,21,10,15,21,15,4,6,3,10,15,

%U 23,26,33,23,31,27,37,34,8,34,17,28,40,21,31,9,17,33

%N Irregular triangular array of numerators of the positive rational numbers ordered as in Comments.

%C Decree that (row 1) = (1) and (row 2) = (3,2). For n >= 4, row n consists of numbers in decreasing order generated as follows: x+1 for each x in row n-1 together with 3/x for each x in row n-1, and duplicates are rejected as they occur. Every positive rational number occurs exactly once in the resulting array.

%H Clark Kimberling, <a href="/A243852/b243852.txt">Table of n, a(n) for n = 1..3000</a>

%e First 6 rows of the array of rationals:

%e 1/1

%e 3/1 ... 2/1

%e 4/1 ... 3/2

%e 5/1 ... 5/2 ... 3/4

%e 6/1 ... 7/2 ... 7/4 ... 6/5 ... 3/5

%e 7/1 ... 9/2 ... 11/4 .. 11/5 .. 12/7 .. 8/5 .. 6/7 .. 1/2

%e The numerators, by rows: 1,3,2,4,3,5,5,3,6,7,7,6,3,7,9,11,11,12,8,6,1.

%t z = 12; g[1] = {1}; f1[x_] := x + 1; f2[x_] := 3/x; h[1] = g[1];

%t b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]];

%t h[n_] := h[n] = Union[h[n - 1], g[n - 1]];

%t g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]]

%t u = Table[Reverse[g[n]], {n, 1, z}]; v = Flatten[u];

%t Denominator[v] (* A243851 *)

%t Numerator[v] (* A243852 *)

%t Table[Length[g[n]], {n, 1, z}] (* A243853 *)

%Y Cf. A243851, A243853, A242488.

%K nonn,easy,tabf,frac

%O 1,2

%A _Clark Kimberling_, Jun 12 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 19:59 EST 2019. Contains 319350 sequences. (Running on oeis4.)