login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243847 a(n) = |{0 < k < n: prime(k) is a primitive root modulo prime(n) and also a primitive root modulo prime(2*n)}|. 1
0, 0, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 3, 1, 5, 2, 1, 1, 3, 5, 2, 3, 2, 3, 5, 4, 4, 7, 1, 5, 5, 7, 7, 6, 8, 6, 6, 5, 6, 3, 5, 4, 8, 6, 4, 5, 6, 6, 12, 8, 15, 17, 7, 10, 8, 11, 10, 8, 9, 10, 7, 18, 6, 15, 4, 9, 5, 10, 10, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,7

COMMENTS

Conjecture: (i) a(n) > 0 for all n > 2.

(ii) For any integer n > 4, there is a primitive root 0 < g < prime(n) modulo prime(n) which is also a primitive root modulo prime(n+1).

LINKS

Zhi-Wei Sun, Table of n, a(n) for n = 1..6000

Zhi-Wei Sun, New observations on primitive roots modulo primes, arXiv:1405.0290, 2014.

EXAMPLE

a(3) = 1 since prime(1) = 2 is a primitive root modulo prime(3) = 5 and also a primitive root modulo prime(2*3) = 13. Note that prime(2) = 3 is not a primitive root modulo prime(2*3) = 13 since 3^3 == 1 (mod 13).

MATHEMATICA

dv[n_]:=Divisors[n]

Do[m=0; Do[Do[If[Mod[(Prime[k])^(Part[dv[Prime[n]-1], i]), Prime[n]]==1, Goto[aa]], {i, 1, Length[dv[Prime[n]-1]]-1}]; Do[If[Mod[(Prime[k])^(Part[dv[Prime[2n]-1], j]), Prime[2n]]==1, Goto[aa]], {j, 1, Length[dv[Prime[2n]-1]]-1}]; m=m+1; Label[aa]; Continue, {k, 1, n-1}]; Print[n, " ", m]; Continue, {n, 1, 70}]

CROSSREFS

Cf. A000040, A242345, A243755, A243837, A243839.

Sequence in context: A238890 A266968 A237593 * A245421 A134143 A295555

Adjacent sequences:  A243844 A243845 A243846 * A243848 A243849 A243850

KEYWORD

nonn

AUTHOR

Zhi-Wei Sun, Jun 12 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 20 05:45 EDT 2019. Contains 321344 sequences. (Running on oeis4.)