OFFSET
1,2
COMMENTS
Numbers returned by the following procedure: For n = 1, 2, 3, ..., let x(n; 1) = 1. Begin the recursive sequence x(n; i) = nozero(x(n; i-1) * n), where the function nozero(x) removes all zeros from x (see A004719). When x(n; i) = x(n; j<i), return x(n; i).
a(10*n) = a(n). - Pontus von Brömssen, May 19 2019
LINKS
Pontus von Brömssen, Table of n, a(n) for n = 1..128
Sean A. Irvine, Java program (github)
FORMULA
Recurrence: x(n; i) = nozero(x(n; i-1) * n), x(n; 1) = 1, i >= 2, with n >= 1. For example, for x(2;10) = 512 and nozero(512 * 2) = nozero(1024) = 124. Therefore x(2;11) = 124.
If the sequence {x(n; i)}_{i >= 1} becomes periodic at some entry x(n; j), that is if there exists a period length L(n) such that x(n; i + L(n)) = x(n; i) for i >= j then a(n) = x(n; j). If there is no such period length then one puts a(n) = 0.
EXAMPLE
a(2) = 366784 because x(2; 491) = nozero(183392 * 2) = 366784. Subsequently x(2; 527) = nozero(1533392 * 2) = nozero(3066784) = 366784, and this happens for the first time. Therefore x(2; 527) = x(2; 491) and the procedure returns x(2; 527) = 366784.
a(3) = 14877 because x(3; 28) = nozero(469359 * 3) = nozero(1408077) = 14877. Subsequently, x(3; 108) = nozero(4959 * 3) = 14877, and this happens for the first time. Therefore x(3; 28) = x(3; 108) and the procedure returns x(3;108) = 14877.
MATHEMATICA
a[n_] := Block[{h = <||>, t = n}, While[! KeyExistsQ[h, t], h[t]=0; t = FromDigits@ Select[ IntegerDigits[n t], # > 0 &]]; t]; Array[a, 20] (* Giovanni Resta, May 20 2019 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Anthony Sand, Jun 12 2014
EXTENSIONS
Edited: Comment, formula and example reformulated. - Wolfdieter Lang, Jul 13 2014
a(5), a(6), a(8), a(9) corrected by Pontus von Brömssen, May 19 2019
a(10)-a(26) from Giovanni Resta, May 20 2019
STATUS
approved