login
A243844
Primes p such that p^5 + p^3 + p + 2 is prime.
1
5, 7, 17, 67, 109, 127, 199, 359, 389, 467, 599, 647, 727, 829, 877, 887, 919, 947, 1187, 1259, 1429, 1789, 1889, 1987, 1997, 2099, 2129, 2309, 2399, 2417, 2557, 2647, 2837, 2909, 3187, 3329, 3359, 3469, 3517, 3527, 3769, 3917, 3967, 4049, 4217, 4289, 4349, 4357, 4507, 4517, 4937, 5309, 5507, 5527, 5879, 6247, 6337
OFFSET
1,1
LINKS
EXAMPLE
p = 5 is in this sequence because p^5 + p^3 + p + 2 = 3257 (prime).
p = 7 is in this sequence because p^5 + p^3 + p + 2 = 17159 (prime).
PROG
(Python)
import sympy.ntheory as snt
p=1
while p>0:
....p=snt.nextprime(p)
....pp=p+(p**3)+(p**5)+2
....if snt.isprime(pp) == True:
........print(p, pp)
CROSSREFS
Sequence in context: A190663 A123195 A248480 * A271656 A145582 A034762
KEYWORD
nonn,easy
AUTHOR
Abhiram R Devesh, Jun 14 2014
STATUS
approved