|
|
A243829
|
|
Number A(n,k) of Dyck paths of semilength n having exactly three (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of k, where 1=U=(1,1) and 0=D=(1,-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.
|
|
13
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 5, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 1, 20, 0, 0, 0, 0, 0, 0, 0, 10, 50, 0, 0, 0, 0, 0, 0, 1, 0, 50, 105, 0, 0, 0, 0, 0, 0, 0, 4, 5, 175, 196, 0, 0, 0, 0, 0, 0, 0, 0, 20, 56, 490, 336, 0, 0, 0, 0, 0, 0, 0, 1, 5, 80, 364, 1176, 540, 0, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,10
|
|
LINKS
|
Alois P. Heinz, Antidiagonals n = 0..140, flattened
|
|
EXAMPLE
|
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
5, 5, 1, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 6, 1, 0, 1, 0, 0, 0, 0, ...
0, 0, 20, 10, 0, 4, 0, 1, 0, 0, ...
0, 0, 50, 50, 5, 20, 5, 6, 0, 0, ...
0, 0, 105, 175, 56, 80, 56, 35, 0, 5, ...
0, 0, 196, 490, 364, 315, 364, 168, 0, 49, ...
0, 0, 336, 1176, 1800, 1176, 1800, 750, 12, 280, ...
|
|
CROSSREFS
|
Main diagonal gives A243772 or column k=3 of A243752.
Cf. A243753, A243827, A243828, A243830, A243831, A243832, A243833, A243834, A243835, A243836.
Sequence in context: A216722 A036297 A087935 * A318952 A089877 A278715
Adjacent sequences: A243826 A243827 A243828 * A243830 A243831 A243832
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Alois P. Heinz, Jun 11 2014
|
|
STATUS
|
approved
|
|
|
|