login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243829 Number A(n,k) of Dyck paths of semilength n having exactly three (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of k, where 1=U=(1,1) and 0=D=(1,-1); square array A(n,k), n>=0, k>=0, read by antidiagonals. 13
0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 5, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 1, 20, 0, 0, 0, 0, 0, 0, 0, 10, 50, 0, 0, 0, 0, 0, 0, 1, 0, 50, 105, 0, 0, 0, 0, 0, 0, 0, 4, 5, 175, 196, 0, 0, 0, 0, 0, 0, 0, 0, 20, 56, 490, 336, 0, 0, 0, 0, 0, 0, 0, 1, 5, 80, 364, 1176, 540, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,10

LINKS

Alois P. Heinz, Antidiagonals n = 0..140, flattened

EXAMPLE

Square array A(n,k) begins:

  0, 0,   0,    0,    0,    0,    0,   0,  0,   0, ...

  0, 0,   0,    0,    0,    0,    0,   0,  0,   0, ...

  0, 0,   0,    0,    0,    0,    0,   0,  0,   0, ...

  5, 5,   1,    0,    0,    0,    0,   0,  0,   0, ...

  0, 0,   6,    1,    0,    1,    0,   0,  0,   0, ...

  0, 0,  20,   10,    0,    4,    0,   1,  0,   0, ...

  0, 0,  50,   50,    5,   20,    5,   6,  0,   0, ...

  0, 0, 105,  175,   56,   80,   56,  35,  0,   5, ...

  0, 0, 196,  490,  364,  315,  364, 168,  0,  49, ...

  0, 0, 336, 1176, 1800, 1176, 1800, 750, 12, 280, ...

CROSSREFS

Main diagonal gives A243772 or column k=3 of A243752.

Cf. A243753, A243827, A243828, A243830, A243831, A243832, A243833, A243834, A243835, A243836.

Sequence in context: A216722 A036297 A087935 * A318952 A089877 A278715

Adjacent sequences:  A243826 A243827 A243828 * A243830 A243831 A243832

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Jun 11 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 23:29 EST 2019. Contains 320381 sequences. (Running on oeis4.)