login
A243769
a(n) = prime(n)^3 mod (n^2 + prime(n)^2).
1
3, 1, 23, 18, 17, 147, 181, 59, 577, 864, 577, 724, 471, 1797, 1595, 1757, 1799, 461, 63, 4246, 2427, 2114, 601, 8215, 9613, 7863, 4279, 1743, 10107, 7652, 14673, 11336, 9671, 3132, 4883, 21177, 19229, 16745, 10683, 6961, 2599, 25966, 30141, 18202, 9415, 37803, 1201, 6538, 48203, 31851, 19757, 11819, 53711, 59088, 51463, 42892, 33339, 10016, 78493, 61693, 36487, 39717
OFFSET
1,1
COMMENTS
Remark: The sequence (n^2+prime(n)^2) mod prime(n)^2 is A000290 and the sequence (n^2+prime(n)^2) mod n^2 is A001248.
LINKS
FORMULA
a(n) = A030078(n) mod A106587(n).
EXAMPLE
prime(4) = 7, 7^3 = 343, 4^2 + 7^2 = 65, 343 mod 65 = 18.
CROSSREFS
Cf. A030078 (prime(n)^3), A106587 (n^2 + prime(n)^2).
Cf. A000290 (n^2), A001248 (prime(n)^2).
Sequence in context: A335644 A027477 A260780 * A137330 A270277 A271605
KEYWORD
nonn
AUTHOR
Freimut Marschner, Jun 10 2014
STATUS
approved