login
A243756
Triangle read by rows: T(n,k) = A242954(n)/(A242954(k) * A242954(n-k)).
1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 1, 4, 4, 4, 1, 1, 1, 4, 4, 1, 1, 4, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 1, 4, 4, 4, 1, 4, 4, 4, 1
OFFSET
0,12
COMMENTS
The exponent of T(n,k) is the number of 'carries' that occur when adding k and n-k in base 4 using the traditional addition algorithm.
If T(n,k) != 0 mod 4, then n dominates k in base 4.
LINKS
Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143.
Tyler Ball and Daniel Juda, Dominance over N, Rose-Hulman Undergraduate Mathematics Journal, Vol. 13, No. 2, Fall 2013.
Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
FORMULA
T(n,k) = A242954(n)/(A242954(k) * A242954(n-k)).
T(n,k) = Product_{i=1..n} A234957(i)/(Product_{i=1..k} A234957(i)*Product_{i=1..n-k} A234957(i)).
T(n,k) = A234957(n)/n*(k/A234957(k)*T(n-1,k-1)+(n-k)/A234957(n-k)*T(n-1,k)).
EXAMPLE
The triangle begins:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 4, 4, 4, 1;
1, 1, 4, 4, 1, 1;
1, 1, 1, 4, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1;
1, 4, 4, 4, 1, 4, 4, 4, 1;
1, 1, 4, 4, 1, 1, 4, 4, 1, 1;
1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
PROG
(Sage)
m=50
T=[0]+[4^valuation(i, 4) for i in [1..m]]
Table=[[prod(T[1:i+1])/(prod(T[1:j+1])*prod(T[1:i-j+1])) for j in [0..i]] for i in [0..m-1]]
[x for sublist in Table for x in sublist]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Tom Edgar, Jun 09 2014
STATUS
approved