|
|
A243743
|
|
Number of compositions of n with exactly eight occurrences of the largest part.
|
|
2
|
|
|
1, 0, 0, 0, 0, 0, 0, 0, 1, 9, 45, 165, 495, 1287, 3003, 6435, 12871, 24319, 43812, 75837, 127005, 207252, 332343, 529617, 851797, 1410484, 2456794, 4572624, 9116790, 19248417, 42237738, 94608183, 213426424, 480788350, 1076330078, 2388681769, 5249788389
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
8,10
|
|
LINKS
|
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 8..650
|
|
MAPLE
|
b:= proc(n, p, i) option remember; `if`(n=0, p!,
`if`(i<1, 0, add(b(n-i*j, p+j, i-1)/j!, j=0..n/i)))
end:
a:= proc(n) local k; k:=8;
add(b(n-i*k, k, i-1)/k!, i=1..n/k)
end:
seq(a(n), n=8..50);
|
|
MATHEMATICA
|
b[n_, p_, i_] := b[n, p, i] = If[n == 0, p!, If[i<1, 0, Sum[b[n-i*j, p+j, i-1]/j!, {j, 0, n/i}]]]; a[n_] := (k=8; Sum[b[n-i*k, k, i-1]/k!, {i, 1, n/k}]); Table[a[n], {n, 8, 50}] (* Jean-François Alcover, Feb 10 2015, after Maple *)
|
|
CROSSREFS
|
Column k=8 of A238341.
Sequence in context: A000581 A306939 A229889 * A145458 A145137 A221142
Adjacent sequences: A243740 A243741 A243742 * A243744 A243745 A243746
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Joerg Arndt and Alois P. Heinz, Jun 09 2014
|
|
STATUS
|
approved
|
|
|
|