login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243666 Number of 5-packed words of degree n. 5
1, 1, 253, 762763, 11872636325, 633287284180541, 90604069581412784683, 29529277377602939454694793, 19507327717978242212109900308085, 23927488379043876045061553841299192011, 50897056444296458534155179226333868898628813, 177758773838827813873239281786548960244155096117573 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

See Novelli-Thibon (2014) for precise definition.

LINKS

Peter Luschny, Table of n, a(n) for n = 0..30

J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014. See Fig. 16.

MAPLE

a := (5+sqrt(5))/4: b := (5-sqrt(5))/4: g := t -> (exp(t)+2*exp(t-a*t)*cos(t*sqrt(b/2))+2*exp(t-b*t)*cos(t*sqrt(a/2)))/5: series(1/(2-g(t)), t, 56): seq((5*n)!*(coeff(simplify(%), t, 5*n)), n=0..11); # Peter Luschny, Jul 07 2015

MATHEMATICA

b = (5 - Sqrt[5])/4; c = (5 + Sqrt[5])/4;

g[t_] := (Exp[t] + 2*Exp[t - c*t]*Cos[t*Sqrt[b/2]] + 2*Exp[t - b*t]* Cos[t*Sqrt[c/2]])/5;

a[n_] := (5n)! SeriesCoefficient[1/(2 - g[t]), { t, 0, 5 n}] // Simplify;

Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 12}] (* Jean-Fran├žois Alcover, Jul 14 2018, after Peter Luschny *)

PROG

(Sage)

# The function CEN is implemented in A243664.

A243666 = lambda len: CEN(5, len)

A243666(12) # Peter Luschny, Jul 06 2015

(Sage) # Alternatively:

def PackedWords5(n):

    shapes = [map(lambda x: x*5, p) for p in Partitions(n).list()]

    return sum([factorial(len(s))*SetPartitions(sum(s), s).cardinality() for s in shapes])

[PackedWords5(n) for n in (0..11)] # Peter Luschny, Aug 02 2015

CROSSREFS

Cf. A011782, A000670, A094088, A243664, A243665, A243666 for k-packed words of degree n for 0<=k<=5.

Sequence in context: A253880 A145628 A237419 * A243687 A263380 A144855

Adjacent sequences:  A243663 A243664 A243665 * A243667 A243668 A243669

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jun 14 2014

EXTENSIONS

a(0)=1 prepended, more terms from Peter Luschny, Jul 06 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 19 00:12 EST 2018. Contains 317332 sequences. (Running on oeis4.)