login
Product of parts of integer partitions as ordered by the table A241918: a(n) = Product_{i=A203623(n-1)+2..A203623(n)+1} A241918(i).
6

%I #7 Jun 21 2014 14:23:49

%S 1,1,1,2,1,4,1,3,2,8,1,9,1,16,4,4,1,6,1,27,8,32,1,16,2,64,3,81,1,18,1,

%T 5,16,128,4,12,1,256,32,64,1,54,1,243,9,512,1,25,2,12,64,729,1,8,8,

%U 256,128,1024,1,48,1,2048,27,6,16,162,1,2187,256,36,1,20,1,4096

%N Product of parts of integer partitions as ordered by the table A241918: a(n) = Product_{i=A203623(n-1)+2..A203623(n)+1} A241918(i).

%H Antti Karttunen, <a href="/A243504/b243504.txt">Table of n, a(n) for n = 1..2048</a>

%F a(n) = Product_{i=A203623(n-1)+2..A203623(n)+1} A241918(i).

%F a(n) = A003963(A241909(n)).

%F a(n) = A227184(A075158(n-1)).

%F a(A000040(n)) = 1 for all n.

%F a(A000079(n)) = n for all n.

%Y The positions of ones after a(1)=1 is given by A000040 (primes).

%Y Cf. A243503 (the sum of parts), A241918, A227184, A075158, A003963, A241909.

%K nonn

%O 1,4

%A _Antti Karttunen_, Jun 05 2014