%I #8 Jun 06 2014 14:45:15
%S 10193,13217,34457,36767,57773,76631,103043,157823,191033,194813,
%T 212243,229799,242273,242867,249377,256889,261563,264071,361511,
%U 457871,486293,502841,508517,647837,653621,694409,697511,777437,798143,825611,847031
%N Primes p such that 1000p-1, 1000p-3, 1000p-7 and 1000p-9 are all prime.
%C Primes in A064977.
%e 10193 is prime and 1000*10193-1 = 10192999 is prime, 1000*10193-3 = 10192997 is prime, 1000*10193-7 = 10192993 is prime and 1000*10193-9 = 10192991 is prime. Thus 10193 is a member of this sequence.
%o (Python)
%o import sympy
%o from sympy import isprime
%o from sympy import prime
%o {print(prime(n),end=', ') for n in range(1,10**5) if isprime(1000*prime(n)-1) and isprime(1000*prime(n)-3) and isprime(1000*prime(n)-7) and isprime(1000*prime(n)-9)}
%o (PARI) for(n=1,10^5,if(ispseudoprime(1000*prime(n)-1) && ispseudoprime(1000*prime(n)-3) && ispseudoprime(1000*prime(n)-7) && ispseudoprime(1000*prime(n)-9),print1(prime(n),", ")))
%Y Cf. A242562, A064977.
%K nonn,less
%O 1,1
%A _Derek Orr_, Jun 04 2014