login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243399 a(0) = 1, a(1) = 19; for n > 1, a(n) = 19*a(n-1) + a(n-2). 16
1, 19, 362, 6897, 131405, 2503592, 47699653, 908796999, 17314842634, 329890807045, 6285240176489, 119749454160336, 2281524869222873, 43468721969394923, 828187242287726410, 15779026325436196713, 300629687425575463957, 5727743087411370011896 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n+1)/a(n) tends to (19 + sqrt(365))/2.

a(n) equals the number of words of length n on alphabet {0,1,...,19} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015

LINKS

Bruno Berselli, Table of n, a(n) for n = 0..200

Tanya Khovanova, Recursive Sequences.

Eric Weisstein's World of Mathematics, Fibonacci Polynomial.

Index entries for linear recurrences with constant coefficients, signature (19,1).

FORMULA

G.f.: 1/(1 - 19*x - x^2).

a(n) = (-1)^n*a(-n-2) = ((19 + sqrt(365))^(n+1)-(19 - sqrt(365))^(n+1))/(2^(n+1)*sqrt(365)).

a(n) = F(n+1, 19), the (n+1)-th Fibonacci polynomial evaluated at x = 19.

a(n)*a(n-2) - a(n-1)^2 = (-1)^n, with a(-2)=1, a(-1)=0.

MATHEMATICA

RecurrenceTable[{a[n] == 19 a[n - 1] + a[n - 2], a[0] == 1, a[1] == 19}, a, {n, 0, 20}]

PROG

(PARI) v=vector(20); v[1]=1; v[2]=19; for(i=3, #v, v[i]=19*v[i-1]+v[i-2]); v

(Magma) [n le 2 select 19^(n-1) else 19*Self(n-1)+Self(n-2): n in [1..20]];

(Maxima) a[0]:1$ a[1]:19$ a[n]:=19*a[n-1]+a[n-2]$ makelist(a[n], n, 0, 20);

(Sage)

from sage.combinat.sloane_functions import recur_gen2

a = recur_gen2(1, 19, 19, 1)

[next(a) for i in (0..20)]

CROSSREFS

Row 19 of A172236.

Sequences with g.f. 1/(1-k*x-x^2) or x/(1-k*x-x^2): A000045 (k=1), A000129 (k=2), A006190 (k=3), A001076 (k=4), A052918 (k=5), A005668 (k=6), A054413 (k=7), A041025 (k=8), A099371 (k=9), A041041 (k=10), A049666 (k=11), A041061 (k=12), A140455 (k=13), A041085 (k=14), A154597 (k=15), A041113 (k=16), A178765 (k=17), A041145 (k=18), this sequence (k=19), A041181 (k=20). Also, many other sequences are in the OEIS with even k greater than 20 (denominators of continued fraction convergents to sqrt((k/2)^2+1)).

Sequence in context: A128360 A001029 A057685 * A041686 A263371 A023283

Adjacent sequences: A243396 A243397 A243398 * A243400 A243401 A243402

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Jun 04 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 02:09 EST 2022. Contains 358712 sequences. (Running on oeis4.)