login
A243376
Decimal expansion of 2*K/Pi, a constant related to the asymptotic evaluation of the number of positive integers all of whose prime factors are congruent to 3 modulo 4, where K is the Landau-Ramanujan constant.
1
4, 8, 6, 5, 1, 9, 8, 8, 8, 3, 8, 5, 8, 9, 0, 9, 9, 7, 1, 2, 7, 2, 4, 5, 6, 4, 0, 5, 8, 6, 8, 2, 3, 4, 0, 5, 5, 3, 8, 1, 7, 1, 9, 8, 1, 7, 3, 9, 5, 4, 1, 2, 1, 3, 6, 8, 8, 1, 5, 4, 5, 1, 0, 8, 1, 6, 2, 9, 8, 5, 5, 0, 9, 3, 2, 0, 7, 5, 8, 1, 7, 1, 4, 7, 6, 0, 2, 0, 2, 1, 0, 3, 8, 1, 0, 6, 9, 3, 7, 1, 2
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constant, p. 100.
LINKS
Gareth A. Jones and Alexander K. Zvonkin, A number-theoretic problem concerning pseudo-real Riemann surfaces, arXiv:2401.00270 [math.NT], 2023. See page 5.
Eric Weisstein's MathWorld, Ramanujan constant
FORMULA
2*K/Pi, where K is the Landau-Ramanujan constant (A064533).
EXAMPLE
0.4865198883858909971272456405868234...
MATHEMATICA
digits = 101; LandauRamanujanK = 1/Sqrt[2]*NProduct[((1 - 2^(-2^n))*Zeta[2^n]/DirichletBeta[2^n])^(1/2^(n + 1)), {n, 1, 24}, WorkingPrecision -> digits + 5]; 2*LandauRamanujanK/Pi // RealDigits[#, 10, digits] & // First (* updated Mar 14 2018 *)
CROSSREFS
Cf. A064533.
Sequence in context: A296488 A199294 A155741 * A200411 A198885 A336275
KEYWORD
nonn,cons
AUTHOR
STATUS
approved