login
A243372
Decimal expansion of 3/(8*K), a constant related to the asymptotic evaluation of the number of positive integers that can be expressed as the sum of two coprime squares, where K is the Landau-Ramanujan constant.
0
4, 9, 0, 6, 9, 4, 0, 5, 0, 4, 1, 1, 5, 3, 9, 5, 7, 3, 6, 0, 0, 3, 4, 9, 3, 0, 3, 5, 4, 2, 5, 8, 9, 1, 9, 9, 5, 4, 2, 5, 7, 1, 3, 1, 1, 4, 4, 1, 9, 5, 5, 2, 3, 0, 3, 7, 5, 1, 7, 1, 6, 6, 7, 3, 6, 8, 3, 5, 7, 7, 3, 0, 1, 9, 2, 4, 8, 6, 0, 8, 4, 9, 5, 2, 3, 7, 7, 1, 6, 2, 1, 8, 1, 1, 4, 8, 0, 2, 0, 4, 9, 2, 5, 7
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constant, p. 100.
LINKS
FORMULA
3/(8*K), where K is the Landau-Ramanujan constant.
EXAMPLE
0.490694050411539573600349303542589...
MATHEMATICA
digits = 104; LandauRamanujanK = 1/Sqrt[2]*NProduct[((1 - 2^(-2^n))*Zeta[2^n]/DirichletBeta[2^n])^(1/2^(n + 1)), {n, 1, 24}, WorkingPrecision -> digits + 5]; 3/(8*LandauRamanujanK) // RealDigits[#, 10, digits] & // First (* updated Mar 14 2018 *)
CROSSREFS
Cf. A064533.
Sequence in context: A097906 A373204 A070016 * A020802 A085675 A254133
KEYWORD
nonn,cons
AUTHOR
STATUS
approved