%I #13 Oct 20 2016 02:43:42
%S 1,0,9,6,3,7,6,3,1,7,1,7,7,3,1,2,8,0,4,0,7,5,9,3,1,1,0,6,9,1,3,5,2,3,
%T 7,9,0,1,9,6,5,3,8,4,9,6,9,4,3,5,1,5,5,1,8,2,9,7,5,5,2,4,9,6,5,2,9,5,
%U 3,1,9,4,0,0,1,5,4,1,4,0,4,0,6,1,9,6,2,8,8,8,1,8,9,8,0,3,4,5,6,9,7,9,4,4
%N Decimal expansion of a 5-dimensional analog of DeVicci's tesseract constant.
%C This constant is the edge length of the largest 3-dimensional cube that can be inscribed within a unit 5-dimensional cube.
%C Also, the smallest positive root in x^4 - 22*x^2 + 25 = 0.
%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.14 DeVicci's tesseract constant, p. 525.
%H Chai Wah Wu, <a href="/A243313/b243313.txt">Table of n, a(n) for n = 1..10001</a>
%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/PrinceRupertsCube.html">Prince Rupert's Cube</a>
%F sqrt(11-4*sqrt(6)) = 2*sqrt(2)-sqrt(3).
%e 1.0963763171773128040759311069135237901965384969435155182975524965...
%t RealDigits[Sqrt[11-4*Sqrt[6]], 10, 104] // First
%Y Cf. A093577, A243309.
%K nonn,cons,easy
%O 1,3
%A _Jean-François Alcover_, Jun 03 2014