login
A243307
a(n) = 2^phi(n) + phi(n).
1
3, 3, 6, 6, 20, 6, 70, 20, 70, 20, 1034, 20, 4108, 70, 264, 264, 65552, 70, 262162, 264, 4108, 1034, 4194326, 264, 1048596, 4108, 262162, 4108, 268435484, 264, 1073741854, 65552, 1048596, 65552, 16777240, 4108, 68719476772, 262162, 16777240, 65552
OFFSET
1,1
LINKS
FORMULA
a(n) = A066781(n) + A000010(n). - Wesley Ivan Hurt, Jun 04 2014
EXAMPLE
From Muniru A Asiru, Jan 23 2018: (Start)
phi(1) = 1 -> a(1) = 2^1 + 1 = 3.
phi(2) = 1 -> a(2) = 2^1 + 1 = 3.
phi(7) = 6 -> a(7) = 2^6 + 6 = 70.
phi(10) = 4 -> a(10) = 2^4 + 4 = 20.
(End)
MAPLE
with(numtheory); A243307:=n->2^phi(n)+phi(n); seq(A243307(n), n=1..50); # Wesley Ivan Hurt, Jun 04 2014
MATHEMATICA
Table[2^EulerPhi[n] + EulerPhi[n], {n, 1, 50}]
PROG
(Magma) [2^EulerPhi(n)+EulerPhi(n): n in [1..40]];
(GAP) List([1..1000], n -> 2^Phi(n) + Phi(n)); # Muniru A Asiru, Jan 23 2018
CROSSREFS
Sequence in context: A280510 A292128 A117775 * A021301 A016652 A008867
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, Jun 04 2014
STATUS
approved