login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243277 Decimal expansion of 'c', a constant related to the asymptotic evaluation of the Lebesgue constants L_n. 2
9, 8, 9, 4, 3, 1, 2, 7, 3, 8, 3, 1, 1, 4, 6, 9, 5, 1, 7, 4, 1, 6, 4, 8, 8, 0, 9, 0, 1, 8, 8, 6, 6, 7, 1, 4, 9, 2, 4, 2, 0, 1, 4, 0, 6, 0, 9, 1, 1, 1, 1, 0, 4, 8, 2, 8, 4, 1, 2, 2, 4, 3, 2, 6, 4, 4, 3, 7, 2, 5, 3, 1, 5, 8, 4, 5, 7, 8, 6, 5, 4, 6, 3, 4, 6, 3, 2, 9, 8, 3, 1, 4, 0, 1, 8, 9, 5, 5, 7, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.2 Lebesgue constants, p. 251.

LINKS

Table of n, a(n) for n=0..99.

Eric Weisstein's MathWorld, Lebesgue constants

FORMULA

c = limit_(n->infinity) (L_n - 4/Pi^2*log(2*n+1)).

c = 8/Pi^2*(sum_(k>0) log(k)/(4*k^2-1))-4/Pi^2*psi(1/2), where psi is the digamma function.

c = 4/Pi^2*A243278.

EXAMPLE

0.9894312738311469517416488090188667149242...

MATHEMATICA

digits = 100; m0 = 50; dm = 50; Clear[f]; f[m_] := f[m] = 8/Pi^2*Sum[-Zeta'[2*k]/2^(2*k), {k, 1, m}] - 4/Pi^2*PolyGamma[1/2]; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits + 10] != RealDigits[f[m - dm], 10, digits + 10], Print["m = ", m]; m = m + dm]; RealDigits[f[m], 10, digits] // First

CROSSREFS

Cf. A226654, A226655, A226656, A243278.

Sequence in context: A245330 A269222 A201994 * A200003 A159590 A146484

Adjacent sequences:  A243274 A243275 A243276 * A243278 A243279 A243280

KEYWORD

nonn,cons

AUTHOR

Jean-Fran├žois Alcover, Jun 02 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 14:26 EST 2016. Contains 278971 sequences.