login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243277 Decimal expansion of 'c', a constant related to the asymptotic evaluation of the Lebesgue constants L_n. 1
9, 8, 9, 4, 3, 1, 2, 7, 3, 8, 3, 1, 1, 4, 6, 9, 5, 1, 7, 4, 1, 6, 4, 8, 8, 0, 9, 0, 1, 8, 8, 6, 6, 7, 1, 4, 9, 2, 4, 2, 0, 1, 4, 0, 6, 0, 9, 1, 1, 1, 1, 0, 4, 8, 2, 8, 4, 1, 2, 2, 4, 3, 2, 6, 4, 4, 3, 7, 2, 5, 3, 1, 5, 8, 4, 5, 7, 8, 6, 5, 4, 6, 3, 4, 6, 3, 2, 9, 8, 3, 1, 4, 0, 1, 8, 9, 5, 5, 7, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.2 Lebesgue constants, p. 251.

LINKS

Table of n, a(n) for n=0..99.

Eric Weisstein's MathWorld, Lebesgue constants

FORMULA

c = limit_(n->infinity) (L_n - 4/Pi^2*log(2*n+1)).

c = 8/Pi^2*(sum_(k>0) log(k)/(4*k^2-1))-4/Pi^2*psi(1/2), where psi is the digamma function.

c = 4/Pi^2*A243278.

EXAMPLE

0.9894312738311469517416488090188667149242...

MATHEMATICA

digits = 100; m0 = 50; dm = 50; Clear[f]; f[m_] := f[m] = 8/Pi^2*Sum[-Zeta'[2*k]/2^(2*k), {k, 1, m}] - 4/Pi^2*PolyGamma[1/2]; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits + 10] != RealDigits[f[m - dm], 10, digits + 10], Print["m = ", m]; m = m + dm]; RealDigits[f[m], 10, digits] // First

CROSSREFS

Cf. A226654, A226655, A226656, A243278.

Sequence in context: A157371 A245330 A201994 * A200003 A159590 A146484

Adjacent sequences:  A243274 A243275 A243276 * A243278 A243279 A243280

KEYWORD

nonn,cons

AUTHOR

Jean-Fran├žois Alcover, Jun 02 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 28 23:27 EST 2014. Contains 252712 sequences.