The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A243266 Decimal expansion of a parking constant related to the asymptotic expected number of cars, assuming random car lengths. 3
 9, 8, 4, 8, 7, 1, 2, 8, 2, 5, 2, 5, 9, 9, 5, 3, 0, 4, 4, 7, 2, 7, 9, 5, 2, 2, 1, 5, 0, 7, 0, 5, 9, 5, 3, 2, 3, 1, 2, 7, 6, 0, 9, 1, 7, 0, 4, 1, 0, 3, 7, 4, 9, 5, 8, 1, 3, 6, 5, 2, 3, 2, 5, 5, 2, 0, 6, 5, 3, 7, 9, 3, 8, 8, 4, 0, 7, 3, 1, 6, 0, 6, 4, 3, 1, 8, 7, 0, 0, 9, 7, 4, 9, 4, 6, 3, 0, 0, 6, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.3 Renyi's parking constant, p. 279. LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 Eric Weisstein's MathWorld, Rényi's Parking Constants FORMULA (1-1/2^((sqrt(17)-1)/4))*sqrt(Pi)*GAMMA(sqrt(17)/2)/(GAMMA((sqrt(17)+1)/4)*GAMMA((sqrt(17)+3)/4)^2), where GAMMA is the Euler Gamma function. EXAMPLE 0.9848712825259953044727952215... MATHEMATICA (1-1/2^((Sqrt[17]-1)/4))*Sqrt[Pi]*Gamma[Sqrt[17]/2]/(Gamma[(Sqrt[17]+1)/4]*Gamma[(Sqrt[17]+3)/4]^2) // RealDigits[#, 10, 100]& // First PROG (PARI) (1-1/2^((sqrt(17)-1)/4))*sqrt(Pi)*gamma(sqrt(17)/2)/(gamma((sqrt(17)+1)/4)*gamma((sqrt(17)+3)/4)^2) \\ G. C. Greubel, Feb 14 2017 CROSSREFS Cf. A050996. Sequence in context: A019720 A200117 A019889 * A358659 A010548 A011458 Adjacent sequences: A243263 A243264 A243265 * A243267 A243268 A243269 KEYWORD nonn,cons AUTHOR Jean-François Alcover, Jun 02 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 6 17:09 EST 2023. Contains 360110 sequences. (Running on oeis4.)