login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243153 Larger of two consecutive primes whose difference is a semiprime. 1
11, 17, 23, 29, 37, 41, 47, 53, 59, 67, 71, 79, 83, 89, 101, 107, 113, 127, 131, 137, 149, 157, 163, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 277, 281, 293, 307, 311, 317, 331, 337, 347, 353, 359, 373, 379, 383, 389, 401, 419, 431, 439, 443 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Number of terms less than 10^k: 0, 0, 14, 107, 695, 4927, 37484, 295717, 2413153, ... - Muniru A Asiru, Jan 27 2018

LINKS

K. D. Bajpai, Table of n, a(n) for n = 1..10000

EXAMPLE

29 is prime and appears in the sequence because 29 - 23 = 6 = 2 * 3 which is a semiprime.

149 is prime and appears in the sequence because 149 - 139 = 10 = 2 * 5 which is a semiprime.

MAPLE

with(numtheory): A243153:= proc()  ; if bigomega(ithprime(n+1)-ithprime(n))=2 then RETURN (ithprime(n+1)); fi; end: seq(A243153 (), n=1..200);

MATHEMATICA

n = 0; Do[t = Prime[k] - Prime[k - 1]; If [PrimeOmega[t] == 2, n++; Print[n, " ", Prime[k]]], {k, 2, 25000}]

PROG

(GAP) P := Filtered([1..10^4], IsPrime);;

P1 := List([1..Length(P)-1], i->P[i+1]-P[i]);;

P2:=[];; for i in [1..Length(P1)] do if Number(Factors(P1[i])) = 2 then Add(P2, P[i+1]); fi; od; A243153 := P2; # Muniru A Asiru, Jan 27 2018

CROSSREFS

Cf. A000040, A001358, A118590, A058620.

Sequence in context: A156781 A175888 A209624 * A280326 A160129 A275682

Adjacent sequences:  A243150 A243151 A243152 * A243154 A243155 A243156

KEYWORD

nonn

AUTHOR

K. D. Bajpai, May 31 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 28 22:03 EDT 2020. Contains 337417 sequences. (Running on oeis4.)