login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243107 Number of terms in a bordered skew determinant. 2
1, 1, 2, 4, 13, 41, 226, 1072, 9059, 58123, 657766, 5268836, 73980787, 707506879, 11823958238, 131277234376, 2542107619081, 32122718085497, 706963537444114, 10015472595953908, 246853433179370621, 3874536631479770761, 105709617658879558402 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Possibly a different attempt to count the same bordered skew determinants as in A002772.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..450

T. Muir, The Theory of Determinants in the Historical Order of Development, 4 vols., Macmillan, NY, 1906-1923, Vol. 3, p. 282.

J. J. Sylvester, Note on determinants and duadic disynthemes, American J of Math, ii, (1879), 89-90, 214-222.

FORMULA

a(n) = Sum_{k=0..floor(n/2)} binomial(n, n - 2*k) * A002370(k).

E.g.f.: exp(x+x^2/4) / (1-x^2)^(1/4).

a(n) ~ n! * GAMMA(3/4) * (exp(5/4) + (-1)^n * exp(-3/4)) / (Pi * 2^(3/4)* n^(3/4)). - Vaclav Kotesovec, Aug 20 2014

MAPLE

a:= proc(n) option remember; `if`(n<4, [1$2, 2, 4][n+1],

      (2*a(n-1)+2*(n-1)^2*a(n-2)-2*(n-1)*(n-2)*a(n-3)

       -(n-1)*(n-2)*(n-3)*a(n-4))/2)

    end:

seq(a(n), n=0..30);  # Alois P. Heinz, Aug 19 2014

MATHEMATICA

b[n_] := Gamma[n+1/2] HypergeometricPFQ[{1/4, -n}, {}, -4]/Sqrt[Pi];

a[n_] := Sum[Binomial[n, n-2k] b[k], {k, 0, n/2}];

a /@ Range[0, 30]

(* Second program: *)

a[n_] := a[n] = If[n < 4, {1, 1, 2, 4}[[n+1]], (2a[n-1] + 2(n-1)^2 a[n-2] - 2(n-1)(n-2)a[n-3] - (n-1)(n-2)(n-3) a[n-4])/2];

a /@ Range[0, 30] (* Jean-Fran├žois Alcover, Nov 13 2020, after Alois P. Heinz *)

PROG

(PARI) my(x='x+O('x^66)); Vec(serlaplace(exp(x+x^2/4) / (1-x^2)^(1/4))) \\ Joerg Arndt, Aug 20 2014

CROSSREFS

Cf. A002771, A002772.

Sequence in context: A118930 A087214 A259239 * A002771 A284159 A050624

Adjacent sequences:  A243104 A243105 A243106 * A243108 A243109 A243110

KEYWORD

nonn,changed

AUTHOR

Sean A. Irvine, Aug 19 2014

EXTENSIONS

a(0)=1 prepended by Joerg Arndt, Aug 24 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 09:38 EST 2020. Contains 338679 sequences. (Running on oeis4.)