login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243107 Number of terms in a bordered skew determinant. 2
1, 1, 2, 4, 13, 41, 226, 1072, 9059, 58123, 657766, 5268836, 73980787, 707506879, 11823958238, 131277234376, 2542107619081, 32122718085497, 706963537444114, 10015472595953908, 246853433179370621, 3874536631479770761, 105709617658879558402 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Possibly a different attempt to count the same bordered skew determinants as in A002772.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..450 (updated by Alois P. Heinz, Jan 19 2019)

T. Muir, The Theory of Determinants in the Historical Order of Development, 4 vols., Macmillan, NY, 1906-1923, Vol. 3, p. 282.

J. J. Sylvester, Note on determinants and duadic disynthemes, American J of Math, ii, (1879), 89-90, 214-222.

FORMULA

a(n) = sum(binomial(n, n - 2*k) * A002370(k), k=0..floor(n/2)).

E.g.f.: exp(x+x^2/4) / (1-x^2)^(1/4).

a(n) ~ n! * GAMMA(3/4) * (exp(5/4) + (-1)^n * exp(-3/4)) / (Pi * 2^(3/4)* n^(3/4)). - Vaclav Kotesovec, Aug 20 2014

MAPLE

a:= proc(n) option remember; `if`(n<4, [1$2, 2, 4][n+1],

      (2*a(n-1)+2*(n-1)^2*a(n-2)-2*(n-1)*(n-2)*a(n-3)

       -(n-1)*(n-2)*(n-3)*a(n-4))/2)

    end:

seq(a(n), n=0..30);  # Alois P. Heinz, Aug 19 2014

PROG

(PARI) x='x+O('x^66); Vec(serlaplace(exp(x+x^2/4) / (1-x^2)^(1/4))) \\ Joerg Arndt, Aug 20 2014

CROSSREFS

Cf. A002771, A002772.

Sequence in context: A118930 A087214 A259239 * A002771 A284159 A050624

Adjacent sequences:  A243104 A243105 A243106 * A243108 A243109 A243110

KEYWORD

nonn

AUTHOR

Sean A. Irvine, Aug 19 2014

EXTENSIONS

Prepended a(0)=1, Joerg Arndt, Aug 24 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 14:41 EDT 2019. Contains 328345 sequences. (Running on oeis4.)