login
A242979
Primes p such that p^3-2 and p^2-2 are both primes.
2
19, 37, 211, 727, 2287, 4507, 4951, 5857, 6217, 6337, 7237, 8329, 8629, 8941, 9127, 9319, 9721, 11467, 12109, 13411, 13831, 15331, 15661, 17029, 17971, 17989, 19489, 21169, 23431, 24439, 24907, 25849, 26161, 31387, 33151, 34039, 34897, 36451, 37441, 37879
OFFSET
1,1
COMMENTS
Intersection of A062326 and A178251.
LINKS
EXAMPLE
19 is prime and appears in the sequence because [19^3-2 = 6857] and [19^2-2 = 359] are both primes.
37 is prime and appears in the sequence because [37^3-2 = 50651] and [37^2-2 = 1367] are both primes.
MAPLE
with(numtheory):A242979:= proc() local p; p:=ithprime(n); if isprime(p^3-2) and isprime(p^2-2)then RETURN (p); fi; end: seq( A242979 (), n=1..5000);
MATHEMATICA
c = 0; t=Prime[n]; Do[If[PrimeQ[t^3 - 2] && PrimeQ[t^2 - 2], c++; Print[c, " ", t]], {n, 1, 3*10^6}];
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, May 28 2014
STATUS
approved