login
A242972
Decimal expansion of a constant related to Niven's constant.
0
8, 9, 2, 8, 9, 4, 5, 7, 1, 4, 5, 1, 2, 6, 6, 0, 9, 0, 4, 5, 7, 0, 0, 9, 4, 3, 0, 0, 2, 2, 4, 2, 7, 0, 9, 3, 3, 6, 0, 5, 0, 4, 0, 8, 5, 9, 4, 4, 5, 6, 8, 4, 3, 2, 6, 4, 7, 4, 9, 5, 6, 7, 9, 0, 7, 4, 3, 7, 2, 7, 3, 4, 3, 8, 7, 2, 7, 6, 5, 6, 4, 9, 4, 9, 0, 6, 6, 9, 6, 8, 8, 7, 3, 6, 9, 4, 1, 7, 8, 3
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.6 Niven's constant, p. 113.
LINKS
Eric Weisstein's MathWorld, Niven's Constant
FORMULA
Equals Sum_(p prime) (zeta(p)-1).
Equals Sum_{k>=2} Sum_{p prime} 1/k^p. - Amiram Eldar, Aug 21 2020
EXAMPLE
0.89289457145126609045700943002242709336...
MATHEMATICA
digits = 100; k0 = 100; dk = 50; $MaxExtraPrecision = 12*digits; z[n_?NumericQ] := Zeta[Prime[n // Floor]]; Clear[s]; s[k_] := s[k] = NSum[z[n] - 1, {n, 1, k}, WorkingPrecision -> digits + 10, NSumTerms -> 10*digits]*(1 + NSum[Zeta[n] - 1, {n, k + 1, Infinity}, WorkingPrecision -> digits + 10]); s[k0] ; s[k = k0 + dk]; While[RealDigits[s[k], 10, digits] != RealDigits[s[k - dk], 10, digits], Print["k = ", k]; k = k + dk]; RealDigits[s[k], 10, digits] // First
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved