login
A242963
Numbers n such that A242962(n) = sigma(n) = A000203(n).
5
5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
OFFSET
1,1
COMMENTS
A242962(n) = (n*(n+1)/2) mod antisigma(n) = A000217(n) mod A024816(n).
Union of number 5 and numbers >= 7.
Conjecture: this sequence lists all the positive integers n such that, for some integer k, (sin(k*Pi/n))^2 is irrational. - Lorenzo Sauras Altuzarra, Jan 27 2020
LINKS
MATHEMATICA
Select[Range[3, 71], DivisorSigma[1, #] == Mod[PolygonalNumber@ #, Total@ Complement[Range@ #, Divisors@ #]] &] (* Michael De Vlieger, Jan 28 2020 *)
PROG
(Magma) [n: n in [3..100000] | ((n*(n+1)div 2) mod (n*(n+1)div 2-SumOfDivisors(n))) eq (SumOfDivisors(n))]
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, May 29 2014
STATUS
approved